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Abstract—From the original idea of the monochromatic variable Eddington factors and
through a critical revision of the straightforward A iteration scheme we have developed an
improved iterative method to solve the line formation problem. Our study deals with the
computational aspects of the method when applied to the solution of the two-level-atom line
transfer problem. At each iteration step, angle and frequency averaged depth-dependent
factors defined as the ratios of the relevant intensity moments are computed form the current
values of the radiation field. These factors are then used to close the system of the radiative
transfer equation moments. Due 10 the quasi-invariance of the factors, the exact solution of
the system is achieved within only a few iterations, even under physical conditions very far
from LTE.

1. INTRODUCTION

The global solution of many astrophysical problems necessarily passes through the repeated
solution of the NLTE line transfer problem. Therefore, the achievement of new numerical methods,
fast and accurate, deserves special attention. The present paper presents an improved iterative
method, which satisfies the above requirements.

It is well known that the intrinsic difficulty of the NLTE line formation problem arises from the
non-local coupling between the radiation field and the excitation state of the gas. From the
mathematical point of view, when the sources and sinks of photons are known, the radiative
transfer (RT) equation reduces to an ordinary differential equation. However, due to the aforesaid
coupling, i.e. the dependence of the transport (emission and absorption) coefficients on the intensity
of the radiation field, the RT equation takes, in general, an integro-differential form.

Different forms of the dependence of the transport coefficients on the radiation field bring about
different mathematical problems. When the dependence is explicit, the NLTE line transfer problem
can be formulated in terms of the corresponding integro-differential equation, and solved by using
either direct or iterative methods. But in many actual problems it is not possible to write explicitly
the transfer coefficients (hence the source function), so that the self-consistent solution of the RT
and statistical equilibrium equations has to be achieved by means of an iterative method. This is
the case, for instance, of the multi-level-atom NLTE line transfer.

In the first part of our study on NLTE line radiative transfer, we shall limit ourselves to the well
known case of spectral line formation under the assumption of a two-level-atom model with
complete redistribution, where the sources at each point depend linearly on the density of the
radiative energy, or, more generally, upon an integral over both angles and frequencies of the specific
intensity of the radiation field. In practice the integral is replaced by a finite sum of values of the
specific intensity. These values are chosen on a proper grid of discrete ordinates, so that to give
an adequate representation of the dependence of the specific intensity on directions and frequencies.
The radiative transfer equation will be solved only for such discrete values.

In spite of the capability of our method to deal with the general case, in the following we will
consider the particular instance of a plane-parallel medium of constant physical properties, in order
to check the numerical accuracy of the solution against the known analytical solution. For the sake
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of simplicity in presentation, the two-level atom case with no background continuum is considered
throughout the paper with the exception of Sec. 3.3. where the method is easily extended to the
case when the background opacity is present at line frequencies. In the second paper the method
will be applied to a medium of variable properties, whereas its extension to a more complex case
of the multi-level atom line formation problem will be treated in the third paper of this series.

2. THE TWO-LEVEL-ATOM PROBLEM
Under the aforesaid hypothesis, the radiative transfer equation takes the form

di,,
H dr

According to the standard notation, I,,(t) is the specific intensity of the radiation field at optical
depth 1, x is the frequency displacement from the line center in Doppler-width units and u is
the cosine of the angle between the photon path and the outward normal; @, is the normalized
profile function that is supposed to be depth independent. The frequency independent line source
function:

= "pr[‘rxy{'r] - S(T]] {t:'

S(r) =eB(z) + (1 — €)1} (2)
contains the scattering integral:

J¢{r3=r @, J(r)dx = r qﬂxdxéj_i I (T)dp, (3)

that describes the angle and frequency coupling of the radiation field at a given depth point. The
boundary conditions are the values of the incident intensity upon the surface at r =0, and the
diffusion approximation for the outgoing intensities at large depth (i.e., t & 1).

We have chosen a constant properties medium without continuum opacity because, due to the
null gradient of the thermal source B, the features of the solution, namely the values of the variation
scale, depend only on ¢, The values of ¢ for typical NLTE problems are very small in most cases,
so that numerical errors can easily blur the solution. Therefore this case is the ideal paradigm to
check the numerical accuracy of any algorithm to solve the RT equation. The case with background
opacity will be treated in Sec. 3.3, of this paper.

2.1. Global methods of solution

Direct differential methods'? are based on a finite difference algorithm that allows one to couple,
point by point, the specific mean intensity. These methods necessarily imply the storage and
inversion of matrices, whose dimensions equal the number of the discrete ordinates required to
describe the dependence of the radiative intensity on angles and frequencies. On the contrary, in
integral methods,” the frequency integrated mean intensity at each depth point can be expressed
as a linear function of the values at all the other points, by using the formal solution of the transfer
equation:

J ()= A{z, 7)8(7’). (4)

The values of J,(r) are then obtained by solving the linear system formed by Eqgs. (2) and (4)
(inversion of the A-operator), whose dimension is equal to the number of depth points necessary
to describe the radiation field.

These techniques have been used by Auer and Mihalas® in the complete linearization method,
developed to solve the non-linear problem of multi-level line formation in stellar atmosphere
modelling. They linearized the set of coupled equations by expanding to the first order the relevant
variables around an initial estimate. The solution consists of the simultaneous determination of the
variables’ increment. The rate of convergence is high but, due to the large number of points required
for a proper discretization of the system, the memory storage and the computational time necessary
for the inversion of big matrices is exceedingly high. Moreover, numerical instabilities can arise
when the cumbersome linearization procedure requires large corrections.
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2.2, Iterative methods of solution

With respect to the above methods, iterative ones are easier both from the theoretical and the
practical point of view. Usually each iteration is split into two steps. In the first one J,(r)
is computed according to Eq. (4) by using the source function S(r) coming from the previous
iteration. Later, in the second step, this value of J,(t) is used to update S(r) via Eq. (2).

This simple procedure, called A-iteration, deals separately with the radiative transfer and the
statistical equilibrium equations, avoiding in such a way the inversion of the A matrix correspond-
ing to the coupling between radiative transfer and atomic population. However, in most cases of
interest the rate of convergence results infinitely slow, preventing in practice the convergence to
the exact solution.

These iterative corrections to the current solution are not effective because of the numerically
unfortunate treatment of the wing photons, which are the protagonists at large optical depth when
defining the length of thermalization. But, according to their small probability of being absorbed
locally, they are weighted by the wings of the narrow-peaked profile @, in the scattering term
J, = [ J.¢, dx of the source function. Therefore their contribution when numerically evaluating this
integral will be negligible, compared to the contribution of the core photons that, because of the
quasi-isotropy of the relevant specific intensity, play only a passive rle at large optical depth. Thus
the contribution of the physically most significant photons is not properly taken into account by
the A-iteration, and the solution thermalizes generally much higher in the atmosphere.

In order to account properly for the wing photons, Rybicki® suggested to eliminate the passive
core photons by equating the mean intensity J, to the local isotropic source function §, at the
optically thick core frequencies. In such a way only the wing photons contribute to the correction
of the current source function. The solution by the A-iteration of the “wing-only™ transfer equation
shows much better convergence properties than that of the original “full” equation. However, the
accuracy and the rate of convergence depend quite a lot on the ad hoc parameter introduced to
define the core-saturation region,

The idea of using such physical assumptions to accelerate the A iteration together with the
operator perturbation technique introduced by Cannon®” to simplify the direct solution, makes the
basis of the class of methods known as ALI [Accelerated (or Approximate) Lambda Iteration].
Namely, the approximate operators were introduced as early as 1962 by Kopp® within the frame
of so-called synthetic method developed for certain nuclear reactor calculations (see Allen and
Wing*).

Differently from the .-iteration, in the first step of each iteration ALI does not evaluate J,(r)
directly from the given current value of §(t), but computes the coefficients of a linear relationship
between J,{t) and S(t):

J @) =ATy+ A*, )5 (). (5)

This relation, where 4 and A* are mutually dependent, together with Eq. (2) leads to the up-to-date
source function.

In other words, ALI uses certain physical or computational approximations to replace the full
description of radiative transfer (the “exact” A operator) by a simpler approximate one {A*),
correcting thus obtained solution iteratively. Thus, in contrast to the classical A iteration, the
inversion of the matrix corresponding to the A* operator is now required at each iteration. We
recall that in the global integral method just one inversion of the “exact™ A -operator is necessary.
Here, although each iteration requires one inversion, a certain degree of freedom is left to choose
the approximate operator A*,

Hence, the optimum choice of A* becomes the central task. On one hand, the approximate
operator A* must be as close a physical approximation of the “exact™ A operator as possible in
order to ensure stable and rapid convergence, but, on the other hand, it must be much simpler for
inversions than A. Proceeding from the Rybicki's core saturation assumption, Scharmer'® has
constructed a diagonal (local) approximate operator whose inversion is trivial. However, the
disadvantage of Scharmer’s A* operator, as well as of all other A* operators based on the core
saturation methodology, is that the convergence properties depend significantly on the value of an
adjustable parameter.
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Olson, Auer, and Buchler'' were the first to point out that a good choice for A* is the diagonal
of the exact 4 matrix. No arbitrary parameter is then needed, however, certain mathematical
approximations of the source function are required for numerical derivation of the diagonal
elements. However, numerical instabilities may always occur, which would prevent to warrant a
priori the successful convergence of the algorithm.

More elaborate (upper-diagonal or multi-diagonal) approximate operators are developed, giving
rise to a more stable and rapid convergence. They are free of any arbitrary parameter, however,
in contrast to the diagonal ones, they are computationally more expensive due to the inevitable
matrix inversions. '

In this paper we formulate the A-iteration scheme in a way different from ALI methods. The
rapid convergence to the exact solution is achieved by making use of proper quasi-invariant
iteration factors, computed in the first step of each iteration, and chosen accordingly to the
physics of the specific problem and the form of the relevant equations. The major advantage of
this method arises from the fact that it does not require any mattrical algorithm for the solution
of the RT equation. The root of the method can be found in Feautrier’s” suggestion that model
atmosphere computations would be made faster using the ratio of two moments of the radiation
field intensity.

Later Auer and Mihalas” applied successfully this idea to the solution of the monochromatic
(gray case) transfer problem, by introducing the variable (depth-dependent) Eddington factors
(VEFs). These are defined as the ratio of the third to the first angular moment of the radiation
field (i.e., K,/J.). As ratios, the YEFs will be closer to the exact values than the corresponding
current estimates of J, and K, at each step of iteration. Therefore they will depend only slightly
on the choice of the initial source function, and will change very little from one iteration to another,
Because of their “quasi-invariance™, the use of VEFs to close the system of p-moments of the RT
equation provides an extremely fast convergence to the exact solution.

The VEFs have been applied to the linearization method to reduce the “angular” dimension of
the system under study. However the basic idea of using the good quasi-invariance properties of
the ratios of homologous physical quantities was not applied to a more general class of problems
till the paper by Borsenberger et al." In this study on resonance line photons transfer together with
transport of excited atoms, Feautrier’s idea was applied to the other variables (frequencies and
velocities), and two kinetic equations, coupled by their source terms, were solved by using the
relevant factors.

The method of the iteration factors to compute the self-consistent temperature correction for
a plane-parallel LTE stellar atmosphere model has been successfully applied in radiative equi-
librium by Simonneau and Crivellari,'* and to the case where also convective transport is present.'®
Fieldus et al'” generalized the method to include spherically extended line-blanketed model
atmospheres.

3. THE METHOD OF THE ITERATION FACTORS

Prior to the description of the iteration factors method developed to solve the line
formation problem, we shall briefly remind of the method of variable Eddington factors as its
analog in the monochromatic transfer problem. The consideration of this familiar example enables
then an almost direct generalization of the basic idea to the multi-frequency (line formation)
problem.

3.1. The monochromatic Eddington factors

In the gray case the time independent radiative transfer equation for a static plane-parallel
one-dimensional medium is:

u dr.(z)

£ = () - () ©

Here S(t) is the monochromatic source function:

S(z)=eB(t) + {1 — e)J(7) (7}



Iteration factors and MLTE line transfer 529

consisting of the thermal (local) term B(t) and the scattering (non-local) term:

|
J(r) = %J Efpiﬂd;n (8)
which depends on the solution I(t). Substitution of (7) and (8) into (6) leads to an integro-
differential equation for each direction u.

For the monochromatic case in plane-parallel geometry, here considered, the solution of the
above integro-differential equation can be achieved with a limited number of A-iterations. But, in
view of more general cases, where a large number of A-iterations is required, it will be necessary
to seek for speeding up its convergence.

An alternative way to obtain an improved source function for the present case is given by using
the u-moments of the RT equation. The first- and the second-order p-moments are defined as

dH
D =um-56) ©a)
dK
df:ﬂ = H(x). (9b)
From Eqgs. (9) one obtains the second-order differential equation
&K
e - 86 (10)

One more relationship between J(r), H(zr) and K(7) is however necessary to close the system
of Eqgs. (9). The most straightforward way to do that is to generalize the Eddington approximation:

K{T} _ %IIHFI duu
J{t) %‘[fndﬁ

The unknown function F(t) is determined iteratively. It must be stressed that in contrast with
the A-iteration, where J(z) and S(r) are computed directly from the specific intensity I, (r), the
latter are used here to compute the Eddington factor F{r). By using this current estimate of F(r),
and hence to obtain the new source function.

This procedure (see the right-hand side of Fig. 1), the analog from the operational point of view
of the A-iteration, leads to a very fast convergence without any extra computational cost. Three
iterations are enough both for plane-parallel'® and spherical'® geometry. This is due to the fact that
F(z)is a good quasi-invariant for this problem. As it is the ratio of two functionals of the intensity,
it results nearly independent of the initial source function, and so is also insensitive to the errors
in I(r). Almost exact already at the first iteration and quickly improving, F(7) speeds the
convergence to the exact solution.

Although not necessary in this case, a more general closure relation can be introduced in order
to achieve an even better convergence.

To conclude, the Eddington factors method is an example of mixed iteration, where the
computation of the “iteration” factors via the RT equation and the solution of Eq. (10) are
performed at separate steps.

= Fl(t). {11)

3.2, The iteration factors for the line problem

As mentioned before, in the present paper we will study the line formation problem for a
two-level-atom under the assumption of complete redistribution, in a semi-infinite medium of
constant physical properties. The relevant equations are Eqs. (1)-(3) of Sec. 2. These equations can
be solved by direct generalization of the procedure described in the previous section.

Starting from an initial estimate of the source function, the specific intensity I, (t) at each chosen
frequency x, angle u and optical depth t, is obtained from the solution of the RT equation (1).
As the source function is given, the computation of I,{t) can be easily performed at a high degree
of reliability. The intensities so obtained are then used to compute the relevant iteration factors

(ERT 3140
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A TTERATION METHOD METHOD OF VARIABLE
EDDINGTON FACTORS
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Fig. 1. Flow-chart of the variable Eddington factors method.

required to close the system of the y-moments of the RT equation. Since two families of variables
now enter the problem, to obtain J, we must integrate the RT equations for the specific intensities
over both angles and frequencies. For each frequency x, the first- and second-order g-moments
of Eq. (1) are given by integration over dp and p du, respectively:

dH,

— = ¢,0,— ) (12a)
dK,
= 0., (12b)

The integration over frequencies is performed applying the operators [ @[ -]dx and j o, ]dx
to Eqs. (12a) and (12b), to obtain:

dﬁfm = J(t) - 9S(r) (13a)
T
dK,(t) _ H,.(1), (13b)

dr
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where we use the following notation for the intensity and profile moments:

Qulr) = J.wzﬁxd-r (14a)

and
@' = fﬂ dx. (14b)
The system of Eqs. (13a) and (13b) can be rewritten as a second-order differential equation:
%= (1) — @S (). (15)

In such a way the description of the line radiative transfer process is eventually reduced to a single
equation, whose terms include all the necessary information relevant to the coupling between the
line photons and the two-level-atom populations.

In order to solve Eq. (15) or, equivalently, the system of Egs. (13a) and (13b) together with
Eq. (2) for the source function, two more equations are required, relating the unknown functions
Jo. K,, H; and J;. These equations replace the loss of information intrinsic to the double
quadrature over u and x.

As in the monochromatic case, the generalized frequency-independent Eddington factor

_K, (@)

JOEEw (16)
is now introduced to account for the anisotropy of the radiation field. At great optical depth the
value of F(t) tends to 1/3 because the radiation field is quasi-isotropic, whereas near the surface
it departs from this equilibrium value, due to the existence of a boundary layer.

The second closure relation must involve the remaining intensity moments. Since they have been
obtained by frequency quadratures, weighted by different powers of the profile ¢,, the relation
required will describe the frequency distribution of the intensity over the line, taking into account
the given opacity profile. Thus an efficient iterative correction towards the exact solution,
throughout the whole medium and especially at great optical depth, will necessarily require a
description as good as possible of the distribution of the radiation field over the line frequencies.
Qur aim will be to include all this information into a single scalar closure relationship.

In the following three different closure relations, at different degrees of sophistication, will be
introduced and discussed.

3.2.1. The most straightforward closure relation. The most obvious way to relate the remaining
intensity moments J; and J, in Eq. (13) is by using the iteration factor:

Jﬂx{f}
I, (1) .

Since J; involves the profile ¢, which is much more narrow than ¢, and covers mainly the line
core, the factor f; represents the ratio of the photons in the core (J,») to the photons (J,) in the
whole line.

The two auxiliary relations given by Eqs. {16) and (17) enable to close the system of Eqgs. (13a)
and (13b), or Eq. (15). By making use of Eq. (2), one eventually obtains:

&K, f—e¥1 - .
d§'=f ‘“’;‘[ .”K,—:pm. (18)

The boundary conditions for Eq. (18) must be derived consistently at the same degree of
approximation. By using the specific intensities obtained at the first step of each iteration, one can
compute at the surface (i = 1), and the bottom (i = N) of the atmosphere, the ratios:

y = ealtr) (19)

T K, (%)

fiz)= (n
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that we will use as initial condition in the form:

(%) = 7K, (x)- (20)

Given the factors F(t), f;{t) and y,, one can now solve the moment equation (18) together with
the two corresponding initial conditions (20) in order to get the mean intensity J,(r), hence the
improved source function 5(t).

Here and in the following, we have taken as convergence criterion that the relative difference
between the values of the source function in two successive iterations is less than 1% at all optical
depths, This value is of the same order as the precision prescribed in the computation of I,,(z})
at a given source function, and corresponds to the relative difference between two successive
iterations when the chosen initial trial source function is the “exact™ solution.

The results obtained by using this first closure relation, i.e. the iteration factors F and f,
are shown in Fig 2 for the case ¢ = 107" and B =1. The required convergence criterion is
satisfied within 31 iterations and the source function is obtained with an error lesser than 1%.
Good thermalization length is achieved already in the first iteration. This clearly shows that
the corrections to the current solution are performed simultaneously throughout the whole
medium.

We have just seen that the use of this most straightforward closure relation in the solution of
the problem for typical non-LTE conditions € = 10~ has proved good computational properties
of our method. However, for more extreme non-LTE situations (¢ < 107%), the instabilities occur
and solution diverges. The attempt to suppress the oscilatory behaviour of the solution by means
of the relaxation technique:

Sf+[={l~—r]f+’+r5"‘, {ﬂﬁrﬁ]} {:2[}

fails.

The instabilities primarily arise at great optical depths and are due to the errors introduced on
the iteration factor f;(1). The latter, although it can give a qualitatively correct explanation of the
behaviour of the radiation field, is not accurate enough from the numerical point of view.

At great optical depths were f; approaches the value of ¢” and F tends to 1/3, Eq. (18) should
reduce to the following diffusion equation:

1 diJ

== —B). 22
However, the numerical errors affecting the computation of f;, when of the order of ¢, may prevent
to meet the above condition. The spurious contribution to the computation of the J, and J.
moments, brought about by the numerical errors, may overcome the contribution of the wing

log T
Fig. 2. The convergence of the S{r} using the factors F{t) and f{z) for the case ¢ = 107" and B=1.
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Table 1. Results obtained using two line regions; core
and wings (g, =./¢/10); B = |; r-relaxation factor

£ r S(r=10) No. iter.
10-2 0 0.100170 5
10~ 0.5 0.010049 9
10-° 0.75 0.001003 23

photons. Thus the iteration factor f;, defined by Eq. (17), cannot transmit correctly the information
carried by the wing photons.

Such a statement can be easily verified by separating the line into two regions: core and
wings. By choosing some critical frequency x. dividing these two regions, and performing
the integration of Eqs. (12a) and (12b) over the frequencies within the line core (0, x.) and the line
wings (x., <o) separately we obtain a twofold number of intensity moments and corresponding
iteration factors. Finally, we are left with two second-order moment equations, one for each line
region:

d* K=
S = I - ol 23)
coupled by the source function:
S =¢B +(1—e)(J5+ T (24)

The above system is solved using the same above described mixed iteration. The solutions obtained
for different non-LTE conditions are given in Table 1.

With respect to the results of the previous case, where a single equation was written for the line
as a whole, the above results are significantly better, to confirm our hypothesis about the origin
of the instabilities. Nevertheless, some instabilities still appear in the case of very large departures
from LTE {a great relaxation factor, i.e., r =0.75, is necessary for ¢ = 107%).

However, our aim is to find out the proper iteration factors to deal with the line as a whole (which
would imply just one second-order moment equation), that allow to get rid of the afore mentioned
difficulties.

3.2.2. A general closure relationship. As discussed above, the most straightforward closure
relation via the iteration factor, given by Eq, (17), provides a fast and accurate solution. But it
does not satisfy completely the requirement of stability.

An improved closure relation can be derived from what is the best numerical simulation of the
transfer process. The formal solution of the BT equation, that describes the evolution of the specific
intensity at each frequency x along any direction y, can be written in the form:

f${f}=jm S{t)exp( — (¢ —r}%m}df’, bsp<l (25a)

OR I S(D)exp((z r}up,m)d—i—jﬂa ~1<p <0, (25b)

In this way one takes into accout separately two streams: Jl(r) and I_{r), namely the
outgoing and incoming radiation field defined on the p-intervals [0, 1] and [— 1, 0], respectively.
All the moments appearing in the systems of Eqgs. (13a) and (13b} can be easily computed in
terms of the above intensitics. By integrating Eqs. (25a) and (25b) over angles and frequencies,
we can write the relations between any pair of two-stream moments and the relevant “full”
moment:

To=U3 +J5),  Ju={5+T3),
Hp.=YH:-Hz), K,=Y4K; +K;). (26)
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We can now rewrite Eqgs. (25a) and (25b) in the form:

I(t)=8(r)+ r (1—?)&""** e de (27a)
I362) = S(E)(1 — &%) J ’ (d?s)e-ﬂ-ﬂm ar @)
i !

In the above expressions the first term in the right-hand side represents the contribution
of the local source function to the radiation field at any given depth point. The integrals
involving the first-order (and higher) derivative account for the non-local character of the transfer

problem.
We can define the local contribution as the “passive” component of the two streams:
Li(z) = 8(z) (28a)
I(x) = 8(x)(1 —e™ ™) (28b)

In both cases the “passive™ term consists of the source function, multiplied by a specific coefficient
that introduces the main scale length of the transfer problem, namely the exponential decay due
to the escape of the photons through the boundary surface.

Accordingly we can introduce the “active-transfer” term, corresponding to the non-local
contribution:

Fi(a) =1I5(x)— S(r) (29a)
To(t)=I,(t) = S()(1 — e, (29b)

Only these terms will take part in the definition of the iteration factors, necessary to the iterative
correction.

We shall stress here that the elimination of the known “passive™ term of the radiation field is
already possible at the beginning of each iteration, when the formal solution is performed. There
is no need of any arbitrary definition of the line core.

The non-local terms of the two-stream moments can be written in the form:

Jr=Jt—8§8 J;=J; =8(1—M,y)
Jh=Jh—S¢’ To=J05—8(>— My)
Hi=Hh—19S Hi=H;—SGp*— M) (30)

For the “full” moments there holds:
Jy=J,— 8(1 —iMy)
T = Jos— S(e° —iMy)
Hy=H,a—IM;S. (31)
Here, the M, (t)s are the frequency integrated integro-exponential functions:

1
M ()= jm: dx j dp p™ e el = JmiEm+ 2@, 1) dx. {32)
¥

Since the basic idea is to isolate the “passive” photons, and to iterate only on the ratios of
the above non-local contribution of the intensity moments, we are led to define the iteration
factors as :

Js s

pt="% gt=—% 33

7 7 (33)

They will be directly computed from Eqgs. (27a) and (27b) at the first step of each iteration, known
as the source function. The factors ¢ * and 8% account separately for the behaviour of the non-local
paris of the radiation field, both outgoing and incoming. The factor & * accounts for the frequency
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redistribution between the line core and the wings. The factor 8% represents the redistribution over
directions and, to some extent, also over frequencies. Both are considered as “form factors”.
Once the a*s and %5 are computed at each optical depth, we can use their definition

J5— Sy - = Jo— S(p' — My)

YETIECS =T, =5(1=M,)
L _Hip=Sp%2 | Hz-S(eY2-M,)
67 = Jr—§ b= J-=5(1—M,) (34)

to obtain, after some algebra, the second closure relation for the system of Eqs. (13a) and (13b)
or Eq. (15)

Ja— 'S =f{J, = Sy + fuH+ 55 (35)
The coefficients f;, f; and f; are simply related to the iteration factors by the relationships:
atd- +a-0t
fi=—%= +6-
gt —a~
S TEY e
So= My — My — fuM)y). (36)

In the frame of the “two-stream™ model, the coefficient f, is a measure of the anisotropy of
the radiation field. The anisotropy is explicitly taken into account by a separate treatment of the
outward and inward intensity moments. The coefficient f; still plays the réle of a diffusion
coefficient. The coefficient f; contains the frequency integrated integro-exponential functions which
reproduce the kinetic behaviour of the transfer process. As we have already said, the main scale
length to describe the radiation field is introduced explicitly in the definition of the iteration factors,
so that they carry on only second-order properties from one iteration to another. The correct
behaviour of the solution at great optical depths is provided by the corresponding differences of
the intensity moments and the local source function. Therefore we might expect a higher quality
procedure, namely a better solution of the second-order equation:

d!
H% =[S, — S)+fuHa+f55. (37
For the sake of further discussion, we will rewrite Eq. (37) into the form:
&K d efs(z) + (1 =€) f5(z)
it~ g - LOLLZ D g - 100 Sk, 38)

Equation (38) is an ordinary second-order linear differential equation with two-peint boundary
conditions. In order to solve it we use a conventional implicit forward elimination-back
substitution method.

We will remember that f; iz always of the order of ¢° (see Fig. 7). When the radiation field is
almost isotropic (1 2 1), f becomes zere. On the other hand, F(r) is of the order of 1/3 and f;
decreases with an angle-frequency integrated exponential decay, which defines the thermalization
length Ly. Thus, when t < Ly it will be ¢f; < (1 — ¢)fy, and Eq. (38) will represent the kinetic-trans-
fer regime. When t > L, it will be ¢f; > (1 —¢)f;, and the diffusion regime with its characteristic
length [,f\/{np*"s] will be recovered. Any error on the factors f;, fy and f; can only slightly modify
these characteristic scale heights, therefore they will not severly affect the results.

The solutions obtained confirm our predictions about the good gquality of the method.
Hereinafter we show the solutions obtained assuming pure Doppler broadening. (The use of Voigt
profile function does not lead to any substantial difference in convergence properties of the
method.) These solutions, which on the other hand are well known (cf. Avrett and Hummer,"
Fig. 2), are shown in Fig. 3, for different values of €. For the same values, the source function at
the surface as well as the number of iterations necessary to fulfill the criterion required, are given
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Fig. 3. 5(t) for different values of ¢ in the constant property medium B = 1. [The factors & *{(t), #%(x)
and F(x) are used].

in Table 2. The error of the solution is always less than 1%, even in the extreme non-LTE case
with ¢ equal to 1075,

The rate of convergence is very high. Ten iterations are enough to obtain the exact solution in
the case ¢ = 10~%, A significant stability is also achieved. For ¢ = 10*, the solution is obtained
without relaxation. When solving the problem for £ < 10-° the solution oscilates (a lot) around
the exact value. However, by applying the relaxation technique with r = 0.5 we obtained a fast and
stable solution, as shown in Fig. 4.

The good convergence property of the method is also illustrated by the figures that follow. It
clearly appears from Fig. 5 that even for the extreme non-LTE case ¢ = 1077 the source function
practically approaches its exact value already at the third iteration.

The behaviour of the four iteration factors «* and &% is presented in Fig. 6. The iterative
procedure is started with an initial estimate obtained by a simple analytical consideration on a
two-stream equilibrium model. It is worthwhile to stress that the convergence is achi¢ved with a

Table 2. Solutions at the surface of a semi-infinite
medium (8 = 1} obtained by the use of the general

closure relation
[ r f Sir=10) Mo, iter.
10~2 0 0.996 (~1) 5
104 0 0.997 (=2) 6
10-¢ 0.5 0.992 (~3) g
10-% 0.5 0.989 (=4) 10
0 0
—1t -1k
{a} {b)
=2k Wy=2r
on h
=P 1 o3
—4} -4 .
1 1 I I 'l i i i L i 1 L
S3.210 1 2 3 4 567 8 210 332101 2 3 4 56 7 8 810
log T log T

Fig. 4. The convergence of 5(t) using the factors @ *(x), #*(r) and F{t) for the case ¢ = 10-% and B w |
in the labelted number of iterations: (2} without relaxation, (b) with r = (.5,
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Fig. 5. The convergence of 5(t) using the factors x*(r), 8%(t) and Fiz) forthecase e = 10 and B = [
in the labelled number of iterations (r = 0.5).

small number of iterations even with such initial values, Similar results would have been obtained
if we had started the procedure with an equilibrium estimate for the source function.

Figure 7 shows the variation of the generalized Eddington factor F(z) as well as that of the
coefficients f;(t), fu(t) and fi(r) in the run of iterations. We should note here that the finite
quadrature range used for the integrals over frequencies affects the behaviour of the cofficients /5.
A steep decrease of fg at great optical depths (t > 10%) shows up. The same occurs with the M, (t)s.
In fact, all the factors containing the integrals M, are affected by the numerical properties of the
quadrature formula. But, as we can see from Fig. 3, such a behaviour has no influence on the
solution, since at these depths the thermalization is already achieved.

3.2.3. Further discussion on the closure relation. So far we have analysed the most general linear
closure relation involving all the relevant intensity moments. This relation brings about the best

0.25 ' 0.25
0.20 1 0.20 }
015 + 0.15
ot 5 o
0.10 N 0.10
oesp 2 - | 0.05
OO0 375701 2 3 4 5 & 7 & 4p 000 3570 17 2 3 4 5 6 7§ 50
log T log T
0.25 0.25
020 t 0.20 }
0.15 0.15 | 0%, 2
& ey
0.70 Q.10 | 1 \/
u-ﬂ'ﬁ I ﬂlﬂ'ﬁ [
000 27T DT 2 3 4 5 6 78 910 00 35590V 2 3 4 5 6 78 510
log T log T

Fig. 6. The variation of the iteration factors a £{x) and #*(r) for the case € = 10-*and & = 1 in the labelled
number of iterations.
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.25 0.1

Q.50
D.45 F
040

F
033

030

52770 1 2 3 #5678 510
log T log T

0 T30 1 23458678910

Fig. 7. The variation of the coefficients of the -;Ius.ure relations f(t), fu(t), fz(r) and Fic) for the case
¢ =10"" and & =1 in the labelled number of iterations.

solution because the basic physics of the line formation problem is properly taken into account.
We shall try not to simplify the treatment of the problem by reducing the number of iteration
factors.

The anisotropy of the radiation field is already taken into account through the generalized
Eddington factors [cf. Eq. (16)). Therefore, instead of the “form factors™ a and 8% of Eq. (34),
we could try to retain the single coefficient

=J¢;-S{¢13—Mmf2]
T T =S -Muf2)

which accounts for the redistribution of the photons over the core and the wings. Such a factor
leads to the closure relation:

5 (39)

Ji—@’8 =f,(J, — 8+ 15, (40)
Now the coefficient f; takes the form
Js=3(fi Mo — M) (41)

The closure relation given by Eq. (40) contains the same physical information as that of the more
general relation given by Eq. (35). However formal difficulties might be introduced by a null
denominator, possible in academic cases. When the denominator becomes zero, it holds
Jy = 8(1 — My, /2), so that the second-order equation is no longer necessary. To make use of the
latter relation just implies a slight change in the algorithm. Therefore it is much better to circumvent
this possibility by using the closure relation given by Eq. (35).

The denominators of the iteration factors defined by Egs. (34) have the same form. But there
the differences (of opposite sign for the outward and inward radiation field) are of the order
of the first derivative of the source function, that becomes zero only at the thermalization
depth (for this academic case), where it is possible to predict the correct behaviour of the iteration
factors.
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Thus, from practical considerations, it is more convenient to separate the outgoing and incoming
intensities, that it is to describe the radiation field in terms of a two-stream model. Under such
conditions a new direct approach becomes possible to define the moment system and the relevant
iteration factors.

From the direct application of such a model to the specific RT equations, we have

dar=
tu g2 = 0I5~ S). “2)

By performing the u-integration over the interval [0, 1], and the frequency-profile integration,
we eventually obtain the system:

dH T
— B = (Jt —
)
dH ;
_-ﬁ =(Jz— 0'S), (43)
coupled by the source term:
S =cB+(1 _E](i'*:J)I (44)

NMNote that we have used the same notation for the ¢, -integrated moments as before. To close
the system we need additional relationships, namely the corresponding iteration factors, Keeping
in mind the previous discussion, such factors can be defined in the following way:

ot = ié
It
as the “form” factors, and
s A
T}

as the *“‘anisotropy™ factors. They can be rewritten as

RS0 - S(e'— My)

STUT=s Y T I Ss0 - My)

gr=He =512

E_=H;‘_S{.”2_Mn}
Ji=5 Cdo =S - M)

Numerically, this approach is the same as the previous one. We might expect that the treatment
of the wing photons is now better because the “form™ factors a® are here obtained by integration
of the radiation field intensities over the wider profile function ¢i. However, the convergence
properties of the solution obtained by using this new approach are the same. One or the other is
just the matter of personal choice.

3.3. lteration factors for a frequency dependent source function

It is easy to generalize the previous method to the case of a spectral line superposed to a
background continuum. From the numerical point of view, this problem should be easier and its
solution more stable, due to the fact that the additional opacity decreases the thermalization length
making the line closer to the condition of LTE.

When the continuum opacity is taken into account, the radiative transfer equation takes the
form:

p S = (o, + DL @) - S.(0)) @)
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Here f denotes the ratio of continuum to the line opacity (f = k°/k") and S.(z) is the total source
function

[ B
%+ﬁ3m+¢:+ B

where S' [given by Eq. (7)] and §° are the relevant line and continuum contributions. We will
assume that the continuum source function 5F is equal to the Plack function B. Both B and the
ratio ff will be supposed constant and known “a priori”.

Equations (45) and (46) can be solved by a direct use of the procedure described in Sec. 3.2. By
performing the integration of Eq. (45) over angles by using the operators j[-]du and | u[-]dy
and over frequencies by using [ ¢,(p,+ f)[-]dx and [¢,[-]dx, we obtain the two moment
equations:

S.(r)=

§4(r), (46)

der{m = Ja(f)— Sa(F) (47a)
d&, _
5. -8 2(8) (47b)

where the frequency integrated moments are given by

Q.(B) = IQ:M% + fy~'dx. (48)

The system (47a,b) must be closed by means of two additional relations. Like in Sec. 3.2. one
can take the generalized Eddington factor Fiz) = K /J, as the first closure relation and, similarly

to Eq. (35)
Jo(B) — Sp{B) =f,(Jy — 5,) + fuHu(B) + f, (49)

as the second one. Here, 5,—the frequency integrated total source function 5, has the form:

Sp = JSI% dx = (1 — ey S, + (4, + 1) B, (50)
where
[ oidx o [ edx
b= [E5 e [ 51

The coefficients of the second closure relation (49) can be derived from the relevant iteration
factors:

at=T2B) i HN6) 52
JE Jt

defined as the ratios of the non-local parts of the corresponding radiation field intensity
moments. Using the “two-stream™ model and proceeding from the formal solution of (45),
the following differences between the radiation field and the “local” source function can be
obtained

It=1t -8,
T =1,— 8,1 —e o+,
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Integrated over angles and frequencies and substituted into (52) they lead to the following
iteration factors:

at = JolB) — S,(F}
N Z

- o ToAB) ~[528) — Mix(B)}
B J;-{Sv'_'M;l]

o+ H;{ﬁ}_gﬂztﬁ}fz
Ji—38,
o o HlB) = [S:(8)/2 ~ Mi(B)

Y S ey v S >3)

[

Here we defined

I‘-
Mi, = |@"S,.dx J,u"" dp g~ Hwx Ml

L

I3

ML.(B) = | o.(@.+ B)' 'S, dx J#” dps 7P P, (54)

where the index s denotes that the integrand involves the frequency dependent total source
function S,.

The coefficients f, and f,; have the same form as in (36), whereas f; is given in terms of M*(f)
and M* by:

fo=30fiMy — Mi(B) — FuMiaP)]. (55)

We will note that such an approach to the solution of the problem when continuum absorption
is taken into account is conceptually the same as the one presented in the previous sections although
slightly more complicated from the computational point of view.

The solutions obtained are shown in Fig.  where the line source function SYz) is presented vs
t for a semi-infinite atmosphere with B = 1, ¢ = 107% and with two values of £ (1077 and 107%).
When § grows, ¢ loses its decisive role on the behaviour of the line source function S'(r), that
approaches its LTE value.

The exact solution of this physically more realistic problem is obtained with 67 iterations only.
The stability is high and no relaxation technique is needed. Thus the iteration factors method
proved to have better convergent properties when applied to physically more complex but
numerically more stable problems.

0 0
2
—1t -1 B
(a} (b)

) 3 1
ﬂrﬂ G"_E
o o

-3t -3k

_4' L i i i i i L i i L 1 i _4 L 1 L i a L i L i i L L

=3-2-10 1 2 3 4 5 6 7 B 210 -3-2-10 1 2 3 45 6 7 8 § 10

leg T log T

Fig. 8. The line source function 5'(z) vs r for a semi-infinite atmosphere B = 1, ¢ = 10~*and for § = 10-#
{a) and f = 10-7 (b).
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4. CONCLUSIONS

In this paper we have presented the method of iteration factors for the solution of the NLTE
radiative transfer problem in spectral lines. This method represents the generalization of the idea
of YEFs to the frequency dependent variables relevant to the line formation problem. Within a
mixed iterative procedure, the so-called iteration factors are computed through the RT equation
in the first step, to give in the second one the closure relation(s) necessary to solve the
frequency-integrated moment equations. Similarly to the A-iteration, the procedure does not
involve any matrix operation, so that only small memory storage and computational time are
required.

In order to achieve a rapid convergence to the exact solution, the iteration factors, defined as
the ratios of the relevant intensity moments, have to be good quasi-invariants, that is nearly
independent of the initial solution and almost exact since the first iterations. Moreover, they must
be simply related to the unknown moments in order to enable their determination in a way as simple
as possible.

In this first part of our study, we have applied the method to the solution of the two-level-atom
line formation problem, where the explicit form of the source function enables a straightforward
definition of the iteration factors. This method provides an accurate and extremely fast convergence
to the exact solution at the small additional cost, with respect to the A-iteration, of solving just
one second-order differential equation.

We have shown that there are several ways to close the moment equations, namely to define the
iteration factors. The closure relation, which contains all the relevant variables and is derived from
the straightforward mathematical simulation of the physical process, gives the best convergence
properties. With the use of this relation, the exact solution is obtained within only a few iterations,
even under conditions very far from LTE. The first impoirtant conclusions is that a two-stream
model, in which the outgoing and incoming directions of the radiation field are treated separately,
leads to a much better convergence.

The definition of the appropriate iteration factors, hence the method itself, is of course problem
dependent. In this respect the method of the iteration factors and ALI are similar. The choice of
the iteration factors is determined by the physics of the problem under study, exactly as is the choice
of the approximate operator A*. However, while the optimum choice of A* is always a question
of compromise between the two basic requirements that A* has to satisfy, the tteration factors
follow almost directly from the structure of the basic equations.

Moreover, the structure of the algorithm easily allows for any further improvement in the
definition of the iteration factors, without any extra computational cost. This becomes especially
important when the radiative transfer has to be coupled with some physical constraints (e.g., of
radiative and hydrostatic equilibrium in the modelling stellar atmospheres) or with some other
physical processes (e.g., the presence of hydro-dynamical flows). In such cases it is difficult, and
sometimes even impossible, to couple the constraint equations with those of radiative transfer for
each frequency and direction. But the sclution can be significantly reduced if the system of transfer
equations is replaced by a single equation with the iteration factors as coefficients. Moreover, due
to such a simple coupling, the occurrence of numerical instabilities is less probable, and the iterative
procedure is easily kept under control.
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