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SUMMARY: The physical constraints were applied in the problem of deconvo-
lution by explicitly correcting noise affected Fourier components of the unknown
distribution. The method gives the constrained estimate optimal in the quadratic
sense, i.e. the estimate closest to the exact solution in the Euclidean space of solu-
tions. The properties of the method were theoretically examined and some practical
applications in the astronomical spectroscopy have been effected. The method is
compared with the similar Fourier spectrum extrapolation procedures; as a conse-
quence application of the method is recommended particularly in the case of low
signal-to-noise measurements.

1. INTRODUCTION

1.1 Mathematical model of convolution

In the real world the observed physical pheno-
menon is ordinarily a superposition of two or more
different phenomena. Without loosing in generality,
we can consider two physical phenomena (that can
be a complex physical phenomenon itself) that are
quantitatively represented by the distributions o(Λ)
and s(Λ) with respect to the frame of the indepen-
dent variables Λ. For simplicity, in this paper we
treat one-dimensional physical quantities (with re-
spect to an independent variable Λ), although most
of the concepts may readily be extended to multiple
dimensions.

Very often this superposition of two physical
phenomena o(Λ) and s(Λ) can be represented by the

mathematical model of convolution:

x(Λ) =

∞∫
−∞

o(Λ′)s(Λ − Λ′)dΛ′, (1)

i.e. the new distribution x(Λ) is a weighted integral
of the distribution o(Λ), the distribution s(Λ) sup-
plying the required weight and being slid along o(Λ)
according to the displacement specified by Λ′.

In practice the distribution x(Λ) can be ob-
tained only in the finite interval L of an independent
variable Λ, and is discretized by the detector, mea-
surement machine or computer and, when the dis-
cretization is done equidistantly, the integral equa-
tion (1) is usually represented as:

x(λ) =
∑
λ′∈L

o(λ′)s(λ − λ′) λ ∈ L, (2)

where the set L is defined as:
L = {λ|λ = 0, 1, ..., N − 1}

and N is the number of the measurements.
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Considering also the effect of the random noise
n(λ), which is inevitably present in all physical mea-
surements, the mathematical model representing our
data is:

i(λ) = x(λ)+n(λ) =
∑
λ′∈L

o(λ′)s(λ−λ′)+n(λ). (3)

The mathematical treatment of the problem
can be further simplified by introducing for a given
distribution f(λ) of the space coordinate λ its Fourier
transform F (ω) of spatial frequency (radians/length)
ω defined as:

F (ω) = N−1
∑
λ∈L

f(λ) exp (−ıωλ
2π

N
) (4)

and its pair:

f(λ) = N
∑

ω∈W
F (ω) exp (+ıωλ

2π

N
) (5)

where ı denotes the imaginary unity, the set W is
defined as:

W = {ω|ω = −ΩN , ...,−1, 0, 1, ...ΩN − 1}
and ΩN is the Nyquist frequency.

For the Fourier transform pairs:

o(λ), O(ω); s(λ), S(ω); n(λ), N(ω)

the relation (3) can be expressed in the Fourier do-
main:

I(ω) = O(ω) · S(ω) + N(ω) ω ∈ W . (6)

To illustrate the convolution phenomenon de-
scribed by the Eqs. (1) and (6), as a test example
for the deconvolution methods, we focus our atten-
tion on a spectroscopical application of the described
mathematical formalism. With numerically gener-
ated object spectrum o(λ) shown in Fig. (1), the
response function s(λ) (Fig. 2. top) and one real-
ization of computer generated random noise, the ob-
served spectrum i(λ) appears as it is shown in Fig. 2.
(bottom). In practice the distribution o(λ) is not
known and only the general prior information about
it (as positivity, smoothness etc.) is supposed to be
known.

Fig. 1. Object spectrum.

Fig. 2. Response function (top) and ”observed”
spectrum (bottom).

Considering that we have measurements i(λ),
and that the distribution s(λ) is a priori known, our
aim is to gain meaningful information about a phe-
nomenon o(λ) that is not a directly physically ob-
servable. This is, in fact, the task of the deconvolu-
tion.

1.2 Problem of deconvolution

The operation of deconvolution appears in ma-
ny astrophysical problems (for an overview of the
spectroscopical applications see Gray, 1976) and in
particular represents an idealization of the problem
of ”unfolding data” through a known instrumental
response function. The spectrometer completely ob-
literates the information at all Fourier frequencies
beyond some finite cutoff ΩE . This is specifically
true at dispersive optical spectrometers, where the
aperture determines ΩE . Similar considerations pre-
vail in Fourier interferometer, where the maximum
path difference determines ΩE .

Although the equation (6) is readily solved for
O(ω) in the absence of the noise, the associated inver-
sion problems, when viewed in a strict mathematical
sense, are unstable against small perturbations N(ω)
in the data function and often possess non-unique so-
lutions. Thus, the problem of the deconvolution is
fundamentally ill-posed. Also, as a consequence of
the fact that the noise is not affected by the convo-

32



CONSTRAINED DECONVOLUTION

lution effects, the measured data function cannot
provide sufficient information on the high frequency
components of the solution.

To regularize the solutions and also to obtain
some degree of super-resolution the extra informa-
tion is needed. Thus, deconvolution is, in fact, an
art of introducing the prior knowledge into the in-
version of the equation (3).

Here we focus our attention on the methods
working explicitly in the Fourier domain. The sim-
ple mathematical form of the equation (6) allows us
to produce efficient and fast algorithms. Further
advantage of Fourier representation is that it pro-
vides a way of exhibiting the data in the form more
convenient to apply some constraints. Indeed, the
Fourier transform of an absolutely integrable func-
tion is known to tend to zero as ω → ∞ and the
smoother the function o(λ) the faster its Fourier
transform falls. Thus, the condition that the O(ω)
identically equals zero outside a finite interval |ω| ≤
ΩS appears to be natural.

It follows that, for example, the prior knowl-
edge of signal cutoff ΩS (that is stronger form of prior
knowledge than smoothness) is easily implemented in
this approach.

When comparing different deconvolution me-
thods their fundamental properties should be taken
into account:

a) Quantity of a priori information that can be
implemented. For all correctly founded methods this
property determines the quality of deconvolution.

b) Speed, that determines the quantity of data
that can be processed in the unity of time.

c) Availability of a priori information used
in the method. That information can be easily or
hardly obtained, more or less reliable, so this prop-
erty influences both a) and b). In this sense general
a priori information as positivity, smoothness, finite
extent etc. is more desirable.

d) Accommodability of the method. A num-
ber of deconvolution methods is developed for the
intended purpose. These methods work best only
for this purpose. But it is very desirable if a method
can be accommodated for the different problems that
could arise.

Very exhaustive discussions of the deconvo-
lution methods in image enhancement and restora-
tion problems can be found in Frieden (1979), also
Narayan and Nityananda (1986) and, for the spec-
troscopical applications, in Jansson (1985).

2. FOURIER SPECTRUM EXTRAPOLA-
TION METHODS

In the Fourier spectrum extrapolation appro-
ach, only the ”most certain” components of the in-
verse filtered observed signal are used in order to
obtain the non-constrained estimate t(λ). The mea-
sured signal i(λ) is filtered by a perfect low-pass filter
that eliminates all frequencies beyond some trunca-
tion frequency ΩE while leaving components at lower

frequencies unchanged. So, the non-constrained es-
timate t(λ) has the Fourier components T (ω):

T (ω) =
{

I(ω)/S(ω) |ω| ≤ ΩE

0 |ω| > ΩE
.

To ensure physically acceptable restored ob-
ject, the constrained estimate re(λ) can be repre-
sented as:

re(λ) = t(λ) + e(λ),
where e(λ) is the bandwidth-extension function with
non-zero Fourier components E(ω) in the

ΩE ≤ |ω| ≤ ΩS

Fourier frequency interval.
Howard (1985) determined the Fourier com-

ponents E(ω) by the minimization of the quadratic
distance: ∑

λ∈L

{
re(λ) · h[−re(λ)]

}2

, (7)

where α is a variable parameter, introduced in order
to allow the analytic differentation of the Eq. (7)
and the function h[x]:

h[x] =
{
1 + exp

(
x/α

)}−1

approaches the unit step function as a limit:

lim
α→0

h[x] =
{ 1 x ≥ 0

0 x < 0
.

In the approach, based on the Burg’s entropy
distance ∑

λ∈L
ln re(λ), (8)

(Frieden, 1979, Komesaroff et al. 1981) use is made
of the possibility of extrapolating an autocorrelation
sequence from 2 · ΩE + 1 ”known” autocorrelations.
This approach originates from the fact that a posi-
tive object can be represented as the inverse Fourier
transform of an autocorrelation function.

Minimizing the distances (7) or (8) one ob-
tains the resulting equations for E(ω) in the closed
and simple form. However, the main algorithmical
difficulty of the later approach is that some other
constraints in the data space (as finite extent, lower
and upper bounds) cannot be easily implemented.

3. FOURIER SPECTRUM CORRECTION
METHOD

3.1 Critical review of the Fourier spectrum extrapo-
lation concept

Generally, although for the high signal-to-no-
ise ratios the Fourier spectrum extrapolation meth-
ods give a noticeably improvement in a noise sup-
pression and resolution of the restored spectrum, it
should be noted that the concept of Fourier spectrum
extrapolation suffers from the following drawbacks:

33



S. JANKOV

a) The noise accumulated in the retained low
frequency Fourier components affects the accuracy
of the extrapolation, so very far extrapolations are
forbidden. For this reason the truncation frequency
ΩE should be chosen sufficiently large (as close as
possible to ΩS). Here we are in the situation to ex-
trapolate noisy data, which is a problematic task,
generally.

b) In order to avoid serious noise accumula-
tion in the retained Fourier components we obviously
have to choose a sufficiently small cutoff ΩE . In this
manner we have to lose the Fourier components sig-
nificantly higher than the noise level. Thus a large
part of the information content of the data (Fourier
components of the signal with ΩE < |ω| ≤ ΩS)
is immediately thrown away. This is illustrated in
Fig. 3. (top) where the Fourier spectrum extrapola-
tion reconstruction is shown. In this reconstruction
only five complex Fourier components of the signal
(ΩE = 5) are used to perform the extrapolation in
Fourier domain.

c) Obviously the previous reasons are contra-
dictory in the sense of choosing cutoff ΩE . Practi-
cally the tradeoff is difficult to make. The Frieden’s
(1979) optimum processing bandwidth is too broad
for the Fourier spectrum extrapolation methods.
Choosing the Frieden’s cutoff the accumulated noise
can only be amplified by an algorithm or, in the best
case, no improvements can be obtained. Figure 3.
(bottom) shows the reconstruction where eight com-
plex Fourier components of the signal are used to
perform the extrapolation in Fourier domain.

Fig. 3. Reconstructions using the Fourier spec-
trum extrapolation approach. Fourier spectrum is
truncated, and five (top) and eight (bottom) complex
Fourier components of the signal were retained.

For these reasons, in the Fourier spectrum ex-
trapolation approach, the restored spectrum obtai-
ned by applying the physical constraints will gener-
ally depend on:

a) the initial approximation (determined by
ΩE); that is illustrated in Fig. 3. and

b) the noise; as it can be seen by comparing
the reconstructions from Fig. 4. where the Howard’s
Fourier spectrum extrapolation algorithm is applied
to noise-free data, and from Fig. 3. (bottom) where
the same reconstruction procedure is applied to noisy
data.

The similar behavior of the autocorrelation se-
quence extrapolation algorithm is experimentally ex-
amined by Komesaroff et al. (1981).

In principle the Fourier spectrum extrapola-
tion concept is a natural approach for the kind of
measurements in which a) some Fourier components
of the signal are not measured (interferometry, Fo-
urier spectroscopy) and b) the measured ones are ob-
tained with an infinite (very high) signal-to-noise ra-
tio. However the approach consistent with the pres-
ence of noise is to correct the Fourier components of
the signal before attempting extrapolation. Biraud
(1969) minimized the quadratic distance in Fourier
space to correct the Fourier transform of the positive
distribution by forcing it to be an autoconvolution
product.

Fig. 4. Noise free reconstruction using the Fouri-
er spectrum extrapolation approach. Eight complex
Fourier components of the signal were retained.

3.2 Minimum quadratic distance approach

In order to correct the non-constrained resto-
red object rn−1(λ), we express the constrained re-
stored object rn(λ) by the relation:

rn(λ) = rn−1(λ) + c(λ)

where, according to (5), the unknown correction fun-
ction c(λ) can be expressed in terms of its Fourier
components C(ω):

rn(λ) = rn−1(λ) +
∑

ω∈W
C(ω) exp (+ıωλ

2π

N
). (9)
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In the following, we show that the problem of
determining the Fourier components C(ω) is also ill-
posed so, in place of requiring that the constraints
be satisfied exactly at a number of points equal to
the number of undetermined coefficients we require
that the sum of the square of rn(λ), over the subset
of λ where the constraints on rn(λ) are not satisfied,
be as small as possible. Thus the basic condition is
of the form:

∑
λ∈L′

n

{
rn(λ)

}2

= min, (10)

where the summation is performed over the subset
L′

n :

L′
n = {λ|λ = λnc} L′

n ⊂ L
consisting of all outcomes λnc such that for rn(λnc)
the constraints are not fulfilled.

Here we use the subscript n to denote that,
generally, the set L′

n does not have the same ele-
ments over the progressing iterations. For some con-
straints, as the constraint of finite extent the set L′

n
is constant.

In this environment the distributions rn−1(λ)
and rn(λ) should be regarded as ”less-constrained”
and ”more-constrained” respectively. For the non-
constrained restored distribution r0(λ) we use the
Wiener estimate that minimizes the quadratic dis-
tance: ∑

λ∈L

{
o(λ) − r0(λ)

}2

= min. (10′)

Figure (5) shows the test reconstruction using the
Wiener optimal filter. That linear deconvolution me-
thod has a propensity to produce solutions that do
not have good physical sense. The physical con-
straint of positivity is violated in a base-line (con-
tinuum) region and the reconstructed distribution
contains negative values arising from noise.

Fig. 5. Reconstruction using Wiener-filter appro-
ach.

In order to satisfy the requirement of positiv-
ity (10), the derivative of the left-hand member with

respect to each parameter C(ω) must vanish, so in-
serting rn(λ) as given by (9) into (10) we must have:

∂

∂C(ω′)

∑
λ∈L′

n

{
rn−1(λ)+

∑
ω∈W

C(ω)exp(+ıωλ
2π

N
)
}2

=0,

where ω′ ∈ W . These conditions take the form of:∑
λ∈L′

n

rn−1(λ) exp (+ıω′λ
2π

N
)+

+
∑
ω∈W

C(ω)
∑

λ∈L′
n

exp (+ı(ω + ω′)λ
2π

N
) = 0. (11)

Proceeding further, to apply the constraints
in the Fourier domain, we mention that O(ω) is zero
for |ω| > ΩS so we conclude, taking into account
similar behaviour of R0(ω), that C(ω) is also zero for
|ω| > ΩS . Further, we can assume that the surface
of the measured distribution i(λ) is not significantly
affected by the noise, so because S(0) = 1, it follows
that C(0) = 0.

In order to insert the above constraints on
C(ω) into (11) we introduce the subset W ′ :

W ′ = {ω|ω = ωnc} W ′ ⊂ W
consisting of all outcomes ωnc such that C(ωnc) are
not equal to zero. Explicitly:

W ′ = {ω|ω = −ΩS, ...,−1, 1, ...ΩS} ΩS ∈ ΩN .
(12)

The Eq. (11) becomes:
∑

λ∈L′
n

rn−1(λ) exp (+ıω′λ
2π

N
)+

+
∑

ω∈W′
C(ω)

∑
λ∈L′

n

exp (+ı(ω + ω′)λ
2π

N
) = 0. (13)

Further, by introducing the distribution:

p(λ) =
{

1 λ ∈ L′
n

0 λ �∈ L′
n

(14)

one obtains: ∑
λ∈L

z(λ) exp (+ıω′λ
2π

N
)+

+
∑

ω∈W′
C(ω)

∑
λ∈L

p(λ) exp (+ı(ω + ω′)λ
2π

N
) = 0,

(15)
where we have written:

z(λ) = p(λ) · rn−1(λ). (16)

Because both z(λ) and p(λ) are real, we easily
conclude, making use of the complex conjugate of
Eq. (5), that the relation (15) can be written as:

Z∗(ω′) +
∑

ω∈W′
C(ω) · Π∗(ω + ω′) = 0. (17)
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Taking the complex conjugate of (17), and since
C(ω) also should be a real function C∗(ω) = C(−ω),
we may write:

Z(ω′) +
∑

ω∈W′
C(−ω) · Π(ω + ω′) = 0

and finally, making use of the symmetry of W ′ :

−Z(ω′) =
∑

ω∈W′
C(ω) ·Π(ω′ −ω) ω′ ∈ W ′. (18)

This is essentially the equation of convolution.
Indeed, without constraints on C(ω), that implies
W ′ = W , and comparing with equation (2) we see
that the equation (18) represents the convolution in
the Fourier domain, or multiplication in the λ do-
main:

−z(λ) = c(λ) · p(λ)
so we see that the determination of C(ω) in the λ
domain implies the division by the function p(λ) de-
fined by Eq. (14) that is, of course, the problem to
be regularized.

Although the application of the constraints
on C(ω) ensures an important degree of regulariza-
tion, from the previous discussion we see the problem
should be treated as fundamentally ill-posed.

4. METHODS FOR RESOLVING THE RE-
LEVANT EQUATIONS

In order to obtain the coefficients C(ω) from
the equation (18), where Z(ω) and Π(ω) are the
Fourier transforms of (16) and (14) respectively, and
finally to perform the constrained restoration using
(9) and (10), several approaches are available:

The most attractive way is to reduce the num-
ber of equations (using only frequencies belonging to
W ′) :

−Z(ω′) =
ΩS∑

ω=−ΩS

C(ω) · Π(ω′ − ω), (19)

where ω′ = −ΩS , ...,−1, 0, 1, ..., ΩS and to resolve
the convolution equation (19) with the constraint
C(0) = 0, meaning that the deconvolved spectral
lines contain the same area as their counterparts in
the raw data. In this approach, choosing the con-
venient ΩS (slightly higher than the actual cut-off)
the effective algorithms, based on the Fast Fourier
Transform can be developed.

Otherwise, in order to express the equation
(18) in the matrix form and preserving the conjugate
symmetry of C(ω), we may write:

−Z(ω′) =
ΩS∑

ω=1

C(ω)·Π(ω′−ω)+
ΩS∑
ω=1

C∗(ω)·Π(ω′+ω),

(20)
where ω′ = 1, 2, ..., ΩI . Here we consider only the
equations provided by ω′ > 0, since the equations
provided by ω′ < 0 are redundant which can easily
be approved by taking the complex conjugate of (20)
and taking into account the conjugate symmetry of
Z(ω) and Π(ω).

In the equation (20) we considered also that no
significant information on C(ω) is contained in Z(ω)
beyond some frequency, say ΩI : ΩS ≤ ΩI < ΩN . It
follows:

Z = C � A + C∗ � B, (21)

where � denotes the matrix product and the vectors
Z and C have the elements:

Z =




Z(1)
Z(2)

...
Z(ω′)

...
Z(ΩI)




C =




C(1)
C(2)

...
C(ω)

...
C(ΩS)




and matrices A and B are expressed explicitly as:

A =




Π(0) Π∗(1) . . . Π∗(ω − 1) . . . Π(ΩS − 1)
Π(1) Π(0) . . . Π∗(ω − 2) . . . Π∗(ΩS − 2)

...
...

. . .
...

. . .
...

Π(ω − 1) Π(ω − 2) . . . Π(0) . . . Π∗(ΩS − ω)
...

...
. . .

...
. . .

...
Π(ΩI − 1) Π(ΩI − 2) . . . Π(ΩI − ω) . . . Π(ΩI − ΩS)




and

B =




Π(2) Π(3) . . . Π(ω + 1) . . . Π(ΩS + 1)
Π(3) Π(4) . . . Π(ω + 2) . . . Π(Ω + 2)

...
...

. . .
...

. . .
...

Π(ω + 1) Π(ω + 2) . . . Π(2ω) . . . Π(ω + ΩS)
...

...
. . .

...
. . .

...
Π(ΩI + 1) Π(ΩI + 2) . . . Π(ΩI + ω) . . . Π(ΩI + ΩS)
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But the main difficulty of the method lies in
the fact that in (n-1)-th stage the domain L′

n is not
yet known so we should use:

p′(λ) =
{

1 λ ∈ L′
n−1

0 λ �∈ L′
n−1

≈ p(λ)

that introduces the errors in both left-hand and ri-
ght-hand sides of the equation (21).

From the expression (9) one see that as
C(ω) → 0 we have rn → rn−1 (implying L′

n → L′
n−1)

so the condition of the minimum norm:∑
ω∈W′

C(ω)C∗(ω) = min (22)

is a natural one for the regularization of the con-
cerned problem.

Simultaneous determination of coefficients
C(ω) from Eq. (21) with the condition (22) leads to
time consuming algorithms. However, since the right
side of the equation (21) is dominated by the diag-
onal terms Π(0) ie. the normalized surface below
p(λ), one can establish the Gauss-Seidel type pro-
cesses where in each iteration:

C(ω) = −Z(ω)
Π(0)

.

Fig. 6. Reconstruction using the Fourier spectrum
correction approach.

The concrete iterative algorithm of that type
we applied to our test problem resulted in reconstruc-
tion shown in Fig. 6.

In this example we used as the initial approx-
imation the Fourier components of the non-constra-
ined distribution:

R̂0(ω) =
{

I(ω)/S(ω) |ω| ≤ ΩF

0 |ω| > ΩF

where ΩF is the Frieden’s optimum processing band-
width.

Fig. 7. Test reconstruction using the Fourier spectrum correction approach with the prior knowledge of the
finite extent of the rotation profile. The ”observed” profile (bottom left) and the response function (top right)
are used to reconstruct the original profile (top left). The resulting reconstruction (bottom right) shows (as
compared with ”observed” and original distribution) significant improvement in spectral resolution.
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This example shows that the constraint of pos-
itivity applied to the correction of the Fourier compo-
nents of the signal leads to significant gains in resolu-
tion and reliability of the reconstructed distribution.

In order to examine the applicability of the
constraint of finite extent we use the distorted stel-
lar rotation profile (Jankov, 1992) as the object spec-
trum (Fig. 7. top left). Supposing known the ”ob-
served” profile (Fig. 7. bottom left) and the response
function (Fig. 7. top right) the result of reconstruc-
tion is shown in Fig. 7. (bottom right). This ex-
ample shows that the prior knowledge of the finite
extent of rotation profile can be used to improve the
resolution and signal-to-noise ratio of the rotation-
ally broadened stellar spectra.

5. CONCLUSIONS

The approach based on correction of the Fou-
rier components of the signal provides a way to pro-
duce efficient and fast algorithms to solve the decon-
volution problem. It is consistent with the presence
of noise in the data and has an advantage of high
noise insensitivity.

The method gives the constrained estimate
closest to the exact solution in the Euclidean data
space allowing a big amount of a priori information
that can be implemented.

The injection of general a priori information
as positivity, smoothness, finite extent etc. allows to

produce solutions that have good physical sense and
leads to significant gains in resolution and reliability
of the reconstructed distribution.

The method is general and can be easily im-
plemented in a number of practical problems partic-
ularly in stellar spectroscopy.
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USLOVǈENA DEKONVOLUCIJA EKSPLICITNOM KOREKCIJOM
FURIJEOVIH KOMPONENATA NEPOZNATE RASPODELE

S. Jankov

Astronomska opservatorija, Volgina 7, 11160 Beograd-74, Jugoslavija

UDK 520.88/520.84
Originalni nauqni rad

Fiziqka ograniqeǌa su primeǌena u
problemu dekonvolucije, eksplicitnom korek-
cijom xumom optere�enim Furijeovih kompo-
nenata signala. Metod daje uslovǉenu ocenu
optimalnu u kvadratnom smislu tj. ocenu naj-
bli�u taqnom rexeǌu u Euklidskom prostoru
rexeǌa. Osobine metoda su teoretski ispi-

tane i date su odre�ene praktiqne primene u
astronomskoj spektroskopiji. Metod je upo-
re�en sa sliqnim procedurama ekstrapolacije
Furijeovog spektra; kao posledica primena
metoda se preporuquje naroqito u sluqaju me-
reǌa sa niskim odnosom signal-xum.
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