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SUMMARY: A theory of collisionless fluids is developed in a unified picture,

where nonrotating (Ω̃1 = Ω̃2 = Ω̃3 = 0) figures with some given random velocity

component distributions, and rotating (Ω̃1 6= Ω̃2 6= Ω̃3) figures with a different
random velocity component distributions, make adjoint configurations to the same
system. R fluids are defined as ideal, self-gravitating fluids satisfying the virial the-
orem assumptions, in presence of systematic rotation around each of the principal
axes of inertia. To this aim, mean and rms angular velocities and mean and rms
tangential velocity components are expressed, by weighting on the moment of iner-
tia and the mass, respectively. The figure rotation is defined as the mean angular
velocity, weighted on the moment of inertia, with respect to a selected axis. The
generalized tensor virial equations (Caimmi and Marmo 2005) are formulated for R
fluids and further attention is devoted to axisymmetric configurations where, for se-
lected coordinate axes, a variation in figure rotation has to be counterbalanced by a
variation in anisotropy excess and vice versa. A microscopical analysis of systematic
and random motions is performed under a few general hypotheses, by reversing the
sign of tangential or axial velocity components of an assigned fraction of particles,
leaving the distribution function and other parameters unchanged (Meza 2002).
The application of the reversion process to tangential velocity components is found
to imply the conversion of random motion rotation kinetic energy into systematic
motion rotation kinetic energy. The application of the reversion process to axial
velocity components is found to imply the conversion of random motion transla-
tion kinetic energy into systematic motion translation kinetic energy, and the loss
related to a change of reference frame is expressed in terms of systematic motion
(imaginary) rotation kinetic energy. A number of special situations are investigated
in greater detail. It is found that an R fluid always admits an adjoint configuration
where figure rotation occurs around only one principal axis of inertia (R3 fluid),
which implies that all the results related to R3 fluids (Caimmi 2007) may be ex-
tended to R fluids. Finally, a procedure is sketched for deriving the spin parameter
distribution (including imaginary rotation) from a sample of observed or simulated
large-scale collisionless fluids i.e. galaxies and galaxy clusters.
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1. INTRODUCTION

Due to particle shocks, collisional fluids (e.g.
stars, gas clouds) exhibit an isotropic stress tensor

(σ2
11 = σ2

22 = σ2
33), where σ2

pp is the rms random ve-
locity component on the axis xp. The absence of par-
ticle shocks (leaving aside extreme situations, such
as high-density galactic nuclei) makes a different sit-

23



R. CAIMMI

uation in collisionless fluids (e.g. galaxies, galaxy
clusters), where the stress tensor is - in general -
anisotropic (σ2

11 6= σ2
22 6= σ2

33). The shape of the
body is determined by systematic rotation, which is
quantified by a spin parameter (null for nonrotat-
ing configurations), and/or by the difference between
stress tensor diagonal components, or any equivalent
anisotropy indicator, related to the rotation and an
equatorial principal axis of inertia, respectively (null
for configurations where the random velocity compo-
nent distribution is isotropic). A description of col-
lisionless fluids based on the equivalence of system-
atic and random motions with respect to the shape,
appears to be highly rewarding and it would provide
further insight on the properties of stellar and galaxy
systems.

In an earlier attempt (Caimmi 1996), the
stress tensor was expressed as the sum of two terms,
one related to a random (isotropic) velocity compo-
nent distribution, and the other to anisotropic inter-
nal motions within the system. Further investigation
was devoted to the simplest situation, where the sys-
tem is made of two equal components rotating at the
same rate but in opposite sense. Then it has been
recognized that the anisotropy excess may be related
to real rotation, if the shape is flattened, and to imag-
inary rotation, if the shape is elongated, with respect
to the rotation axis.

A later approach (Caimmi and Marmo 2005)
has been restricted to homeoidally striated density
profiles, for which the tensor virial equations were
formulated and generalized to unrelaxed configura-
tions. The kinetic-energy tensor has been expressed
as the sum of two terms, one related to systematic ro-
tation obeying an assigned law, and the other to the
remaining motions, e.g. random motions, streaming
motions, radial motions. Finally, an expression of
the spin parameter in terms of the anisotropy excess
showed the role of systematic and remaining motions
in flattening or elongating the shape.

The above results were improved and ex-
tended in subsequent work (Caimmi 2006, hereafter
quoted as C06), where the imaginary rotation was re-
lated to negative anisotropy excess. The sequences of
configurations for which the generalized tensor virial
equations hold have been determined for homeoidally
striated Jacobi ellipsoids including prolate shapes
induced by imaginary rotation. The results of nu-
merical simulations on the stability of rapidly rotat-
ing spherical configurations (Meza 2002) were inter-
preted in the light of the theory. To this respect, the
key argument is that the reversion (from clockwise
to counterclockwise or vice versa) of tangential ve-
locity components related to an assigned fraction of
partices, preserves the potential energy, the kinetic
energy, and the distribution function (Lynden-Bell
1960, 1962, Meza 2002).

The study of homeoidally striated Jacobi ellip-
soids was extended to a more general class of bodies
(R3 fluids) in a recent paper (Caimmi 2007, here-
after quoted as C07), where the contribution of ra-
dial and tangential velocity components in the equa-
torial plane was investigated in more detail. In ad-
dition, mean and rms (weighted on the moment of

inertia) angular velocity were defined, and related
to systematic and random motion tangential kinetic-
energy tensor components, respectively. Also for R3
fluids, was been realized that the effect of (positive
or negative) anisotropy excess is equivalent to addi-
tional figure (real or imaginary) rotation.

The current attempt is aimed to extend the
above mentioned results to a still more general class
of bodies, R fluids, defined as ideal, self-gravitating,
collisionless fluids where rotation occurs about each
of the principal axes of inertia. It will be shown that
R fluids always admit an adjoint configuration where
figure rotation occurs around a single principal axis,
that is a R3 fluid. Accordingly, all the results which
hold for R3 fluids may be extended to R fluids.

The paper is organized as follows. A number
of basic definitions are provided in Section 2, includ-
ing the inertia tensor, the angular-velocity tensor,
and the angular-momentum tensor. The generalized
tensor virial equations for R fluids are formulated in
Section 3. The microscopical analysis of systematic
and random motions, for a collisionless fluid made
of N identical particles, is carried out in Section 4,
where a velocity component reversion process is de-
fined, and a number of special situations are analysed
in detail with respect to kinetic energy changes from
random to systematic motions and vice versa. A pro-
cedure aimed at the derivation of the spin parameter
distribution (including imaginary rotation) from an
assigned sample of observed or simulated objects, is
outlined in Section 5. Some concluding remarks are
reported in Section 6.

2. ANGULAR-VELOCITY AND
ANGULAR-MOMENTUM TENSOR

In the special case of solid bodies, rotation
is rigid and occurs around a single axis which, in
turn, can remain fixed or change its direction. Ac-
cordingly, the angular momentum and the rotation
kinetic energy read (e.g. Landau and Lifchitz 1966,
Chap.VI, §§ 31-33; hereafter quoted as LL66):

Jr =
3∑

s=1

I ′rsΩs, r = 1, 2, 3 , (1)

Trot =
1
2

3∑
r=1

3∑
s=1

I ′rsΩrΩs , (2)

where ~J = (J1, J2, J3) is the angular-momentum vec-
tor, −→Ω = (Ω1,Ω2, Ω3) the angular-velocity vector,
and I ′ the inertia tensor:

I ′rs =
∫

S

ρ(x1, x2, x3)

[
δrs

3∑
r=1

x2
r − xrxs

]
d3S , (3)

related to the density profile, ρ, within the volume,
S, δrs being the Kronecker symbol. The diagonal
components of the inertia tensor, I ′11, I ′22, I ′33, are
the moments of inertia with respect to the axes, x1,
x2, x3, respectively.
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In addition, the inertia tensor is symmetric
and of second rank, which implies the existence of
a reference frame, (O′X1 X2 X3), where the inertia
tensor is diagonal (LL66, Chap. VI, § 32):

I ′rs = δrsI
′
rr (4)

the coordinate axes of this reference frame coincide
with the principal axes of inertia, and the diagonal
components define the principal moments of inertia.
Accordingly, Eqs. (1) and (2) reduce to:

Jr = I ′rrΩr , r = 1, 2, 3 , (5)

Trot =
1
2

(
I ′11Ω

2
1 + I ′22Ω

2
2 + I ′33Ω

2
3

)
, (6)

where, in addition (LL66, Chap. VI, § 32):

I ′rr ≤ I ′ss + I ′tt , r = 1, 2, 3 , s = 2, 3, 1 ,

t = 3, 1, 2 . (7)

The inertia tensor has been defined in a differ-
ent way, as (e.g. Chandrasekhar 1969, Chap. 2, § 9;
Binney and Tremaine 1987, Chap. 4, § 3):

Irs =
∫

S

ρ(x1, x2, x3)xrxs d3S , (8)

and the combination of Eqs. (3) and (8) yields:

I ′rs = δrs

3∑
r=1

Irr − Irs , (9)

I ′rr = Iss + Itt , r 6= s 6= t , (10)
I ′rs = −Irs , r 6= s , (11)

or:

2Irr = I ′ss + I ′tt − I ′rr , r 6= s 6= t , (12)
Irs = −I ′rs , r 6= s , (13)

which translates one formulation into the other (e.g.
Bett et al. 2007).

In the general case of (collisional or collision-
less) fluids, rotation could be different from that of
the solid-body, and around each principal axis of in-
ertia. Let (O x1 x2 x3) be a generic reference frame
and (O′X1 X2 X3) a reference frame where the origin
coincides with the centre of inertia, and the coordi-
nate axes coincide with the principal axes of inertia.
Let the coordinate axes, X1, X2, X3, be defined as
the principal axes. Let −→Ω1,

−→Ω2,
−→Ω3, be the angular-

velocity vectors (to be specified later) related to the
principal axes of inertia. Let Ωrs be the component
of the vector −→Ωr on the coordinate axes xs. The
(3×3) tensor, Ωrs, is defined as the angular-velocity
tensor of the system under consideration, with re-
spect to the reference frame, (O x1 x2 x3). Let −→ω1,−→ω2, −→ω3, be the angular-velocity vectors related to the
coordinate axes, x1, x2, x3. The following relation
holds:

ωs =
3∑

r=1

Ωrs , s = 1, 2, 3 , (14)

and the angular-velocity tensor, ωrs = Ωrs, can for-
mally be defined. Similarly, the (3 × 3) angular-
momentum tensor is expressed as:

J ′rs = I ′rsωrs , (15)

J ′s =
3∑

r=1

I ′rsωrs , (16)

where the inertia tensor is related to the reference
frame (O x1 x2 x3).

In the special case where the reference frame,
(O x1 x2 x3), coincides with (O′X1 X2 X3), one has
Ωrs = δrsΩrr. Accordingly, Eqs. (14)-(16) reduce to:

ωs = Ωs = Ωss = ωss , (17)
J ′rs = δrsI

′
rrΩrr , (18)

J ′s = Js = I ′ssΩs , (19)

where I ′tt = Irr + Iss, r 6= s 6= t, represents the mo-
ment of inertia with respect to the principal axis of
inertia, xt. From this point on, it shall be assumed
that the origin coincides with the centre of inertia,
and the coordinate axes coincide with the principal
axes of inertia.

The rotation kinetic-energy tensor is defined
as:

(Trot)rs =
1
2
I ′rsΩrΩs =

1
2
δrsI

′
rrΩ

2
r , (20)

where the diagonal components of the angular-
velocity tensor are expressed as (C07):

Ωr = Ω̃r =
1

I ′rr

∫

S

∣∣∣−→Ωr(x1, x2, x3, t)
∣∣∣ w2

rρ(x1, x2, x3, t)

× d3S, r 6= s 6= t, (21)
∣∣∣−→Ωr(x1, x2, x3, t)

∣∣∣ =
vφr (x1, x2, x3, t)

wr
, (22)

wr = (x2
s + x2

t )
1/2 , (23)

and Ωr(x1, x2, x3, t) is the mean value related to all
the particles at the time, t, within the infinitesi-
mal volume element, d3S = dx1 dx2 dx3, centred on
the point, P(x1, x2, x3), vφr is the tangential velocity
component in the (O xs xt) principal plane, and the
moment of inertia, I ′rr = Iss + Itt, reads:

I ′rr =
∫

S

w2
rρ(x1, x2, x3, t) d3S , r 6= s 6= t ,

(24)
as expected from the theorem of the mean, in con-
nection with Eq. (21).

Similarly, the mean square diagonal compo-
nents of the angular-velocity tensor are expressed as:

Ω2
r = (̃Ω2

r) =
1

I ′rr

∫

S

∣∣∣−→Ωr(x1, x2, x3, t)
∣∣∣
2

w2
r

× ρ(x1, x2, x3, t) d3S, r 6= s 6= t, (25)
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and the related variance reads:
(
σ

Ω̃rΩ̃r

)2

= (̃Ω2
r)− (Ω̃r)2 . (26)

At this stage, it may be useful to extend and
generalize the definition of figure rotation.

Figure rotation. Given an R fluid, the fig-
ure rotation is defined as the mean angular
velocity, weighted on the moment of inertia,
with respect to a selected principal axis.
In terms of tangential velocity components,

the counterparts of Eqs. (21), (25), and (26) read:

ṽφr =
1

MRGr

∫

S

∣∣∣−→Ωr(x1, x2, x3, t)
∣∣∣ w2

rρ(x1, x2, x3, t)

× d3S ; r 6= s 6= t , (27)

(̃v2
φr

) =
1
M

∫

S

∣∣∣−→Ωr(x1, x2, x3, t)
∣∣∣
2

w2
rρ(x1, x2, x3, t)

× d3S; r 6= s 6= t, (28)
(
σṽφr ṽφr

)2 = (̃v2
φr

)− (ṽφr )
2 , (29)

where RGr is the curl radius with respect to the prin-
cipal axis xr:

RGr =
(

I ′rr

M

)1/2

, (30)

and the combination of Eqs. (25) and (28); (21) and
(27); (26) and (29) yields:

M (̃v2
φr

) = I ′rr (̃Ω2
r) ; (31a)

M(ṽφr )
2 = I ′rr(Ω̃r)2 ; (31b)

M
(
σ

φ̃rφ̃r

)2

= I ′rr

(
σ

Ω̃rΩ̃r

)2

; (31c)

which relate tangential velocity components in the
(O xs xt) principal plane, to angular velocity compo-
nents with respect to the principal axis xr.

3. THE GENERALIZED TENSOR
VIRIAL EQUATIONS FOR R FLUIDS

Let R fluids be defined as (collisional or colli-
sionless) ideal self-gravitating fluids where figure ro-
tation occurs around all the three principal axes of
inertia. Let (O x1 x2 x3) be a reference frame where
the origin coincides with the centre of inertia, and
the coordinate axes coincide with the principal axes
of inertia. Then the mean radial velocity components
must necessarily equal zero:

vwr = 0 , (v2
wr

) = (σwrwr )
2

, (32)

where vwr is the radial velocity component on the
principal plane (O xs xt), perpendicular to the prin-
cipal axis xr. Let positive and negative radial veloc-
ity components be defined as directed outwards and

inwards, respectively. The same holds for the mean
tangential velocity components:

vφr = 0 . (v2
φr

) = (σφrφr )
2

, (33)

even in presence of systematic rotation. Let posi-
tive and negative tangential velocity components be
defined as rotating counterclockwise and clockwise,
respectively.

The kinetic-energy tensor may be expressed
as the sum of two contributions: one, related to sys-
tematic motions, and the other, related to random
motions (C07). The result is:

Tkskt
= (Tsys)kskt

+ (Trdm)kskt
; k = w, φ ;

(34)
where the terms on the right-hand side, using
Eqs. (31) and (32), can be expressed as:

(Tsys)wswt
= 0 , (35a)

(Trdm)wswt
=

1
2
δstM (σwsws

)2 , (35b)

(Tsys)φsφt =
1
2
δstI

′
ss(Ω̃s)2 , (36a)

(Trdm)φsφt =
1
2
δstI

′
ss

(
σ

Ω̃sΩ̃s

)2

. (36b)

Keeping in mind that nondiagonal components are
null in the case under discussion, only diagonal com-
ponents shall be considered from this point on. The
combination of Eqs. (26) and (36) yields:

Tφrφr =
1
2
I ′rr (̃Ω2

r) , (37)

which depends on the density profile via the moment
of inertia, I ′rr, and the tangential velocity compo-
nent distribution via the mean square angular veloc-
ity, (̃Ω2

r), regardless of the fraction of systematic and
random motions.

In terms of the contributions related to the ax-
ial components of the kinetic-energy tensor, Tss and
Ttt, Eqs. (34), (36), and (37) read:

(Tφrφr )`` =
1
2
I``(̃Ω2

r) , ` = s, t , (38a)

[(Tsys)φrφr ]`` =
1
2
I``(Ω̃r)2 , ` = s, t , (38b)

[(Trdm)φrφr ]`` =
1
2
I``

[
(̃Ω2

r)− (Ω̃r)2
]
, ` = s, t, (38c)

where Eq. (10) has been used.
The invariance of a vector with respect to a

change of the reference frame, implies the validity of
the relations (C07):

(v2
wr

) + (v2
φr

) = (v2
s) + (v2

t ) , (39)

(vwr )
2 + (vφr )

2 = (vs)2 + (vt)2 , (40)

(σwrwr )
2 + (σφrφr )

2 = (σss)
2 + (σtt)

2
, (41)

26



R FLUIDS

where the velocity components on the xs and xt prin-
cipal axes are labelled by the indices, s and t, respec-
tively.

The combination of Eqs. (26), (29), and (39)-
(41) yields:

(σwrwr
)2 = (σss)

2 + (σtt)
2 − I ′rr

M

[
(̃Ω2

r)− (Ω̃r)2
]

,

(42)
which makes Eqs. (34) and (35) translate into:

(Twrwr
)`` = [(Trdm)wrwr

]``

=
1
2
Mσ2

`` −
1
2
I``

[
(̃Ω2

r)− (Ω̃r)2
]

, ` = s, t , (43a)

[(Tsys)wrwr ]`` = 0 , ` = s, t , (43b)

in terms of the contributions related to the axial com-
ponents of the kinetic-energy tensor, Tss and Ttt.

The generalized tensor virial equations of the
second order can be formulated, extending the pro-
cedure used for R3 fluids (C07). The result is:

Irr

[
(Ω̃s)2 + (Ω̃t)2

]
+ Mζrrσ

2 + (Epot)rr = 0 , (44)

σ2 = σ2
11 + σ2

22 + σ2
33 , (45)

ζpp =
(T̃rdm)pp

Trdm
=

σ2
pp

σ2
, p = 1, 2, 3 , (46a)

ζ11 + ζ22 + ζ33 =
T̃rdm

Trdm
=

σ̃2

σ2
= ζ , (46b)

where Ω̃s and Ω̃t are mean angular velocity com-
ponents due to systematic rotation around xs and
xt axes, respectively, (Epot)rr is the self potential-
energy tensor, ζrr may be conceived as generalized
anisotropy parameters (Caimmi and Marmo 2005,
C06, C07), and T̃rdm is the effective random kinetic
energy i.e. the right amount needed for an instanta-
neous configuration to satisfy the usual tensor virial
equations of the second order, defined by the effective
anisotropy parameters (C07):

ζ̃pp =
(T̃rdm)pp

T̃rdm

=
ζpp

ζ
, p = 1, 2, 3 ; (47a)

ζ̃11 + ζ̃22 + ζ̃33 = 1 , (47b)

and the condition, ζ = 1, or ζpp = ζ̃pp, p = 1, 2, 3,
reduces Eqs. (44) to their standard counterparts.
To get further insight, a microscopical analysis is
needed.

In the special case of axisymmetric configura-
tions, I11 = I22, (Epot)11 = (Epot)22, and the com-
bination of the related tensor virial equations, ex-
pressed by Eq. (44), yields:

Ipp

[
(Ω̃q)2 − (Ω̃p)2

]
= Mσ2(ζqq − ζpp) ;

p = 1, 2 ; q = 2, 1 ; (48)

where the figure rotation excess, [(Ω̃q)2 − (Ω̃p)2], is
counterbalanced by an anisotropy excess, (ζqq−ζpp);
in particular, a null figure rotation excess implies a
null anisotropy excess and vice versa. Accordingly, a
flattening in the (O xp xr) principal plane, induced by
the figure rotation excess, has to be counterbalanced
by an elongation on the xq principal axis, induced
by the anisotropy excess, to yield an axisymmetric
configuration with respect to the xr principal axis.

4. MICROSCOPICAL ANALYSIS
OF SYSTEMATIC AND
RANDOM MOTIONS

Consider a collisionless R fluid. Let N be the
total number of particles and m the mean particle
mass in absence of mass segregation i.e. let local and
global mean particle masses coincide. For simplicity,
the equivalent description (C07) involving N iden-
tical particles of mass, m, shall be considered. Let
vφr be the tangential velocity component in (O xs xt)
principal plane. It is worth noting (e.g. Meza 2002)
that the distribution function is independent of the
sign of vφr , and the whole set of possible configura-
tions is characterized by an equal amount of both ki-
netic and potential energies. Numerical simulations
show that spherical systems, even if rapidly rotating,
are dynamically stable after reversion of the tangen-
tial velocity component in an assigned fraction of
particles (Meza 2002).

For the sake of simplicity, let the initial
configuration be nonrotating (vφr = 0) and with
isotropic random velocity component distribution
(ζ11 = ζ22 = ζ33). In the case under discussion of
identical particles, m(i) = m, 1 ≤ i ≤ N , the centre
of inertia velocity components, vCr, equal the corre-
sponding arithmetic means:

vCr =

N∑

i=1

m(i)v(i)
r

N∑

i=1

m(i)

=

m

N∑

i=1

v(i)
r

Nm
= vr , (49)

and the moments of inertia, I ′rr, reduce to:

I ′rr =
N∑

i=1

m(i)
[
w(i)

r

]2

= m

N∑

i=1

[
w(i)

r

]2

= MR2
Gr ,

(50)
according to Eq. (30).

The weighted mean, mean square, and
rms tangential velocity components, expressed by
Eqs. (27)-(29), read:

ṽφr =
1
M

N∑

i=1

m(i)v
(i)
φr

=
m

M

N∑

i=1

v
(i)
φr

= vφr , (51)
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(̃v2
φr

) =
1
M

N∑

i=1

m(i)
[
v
(i)
φr

]2

=
m

M

N∑

i=1

[
v
(i)
φr

]2

= (v2
φr

),

(52)
(
σ

φ̃rφ̃r

)2

= (v2
φr

)− (vφr
)2 = (σφrφr

)2 , (53)

and Eqs. (31) reduce to:

(v2
φr

) = R2
Gr (̃Ω2

r) ; (54a)

(vφr )
2 = R2

Gr(Ω̃r)2 ; (54b)

(σφrφr
)2 = R2

Gr

(
σ

Ω̃rΩ̃r

)2

; (54c)

which relate weighted angular velocities with respect
to the xr axis to mean tangential velocity compo-
nents on the (O xs xt) principal plane.

At this stage, let the tangential velocity com-
ponent of a fraction, n/N , of particles, be reversed
in equal sense (from clockwise to counterclockwise or
vice versa), according to the following assumptions:

(i) Both the number, n, of particles where the
tangential velocity component was reversed,
and the number, N − n, of particles which re-
main unchanged, are sufficiently large, 1 <<
n << N , 0 ≤ n ≤ Int(N/2).
(ii) The fraction, nk/Nk, of particles where
the tangential velocity component has been re-
versed, within a generic volume element, Sk, is
independent of the volume element, nk/Nk =
n/N .
(iii) The system is made of identical particles,
m(i) = m, M = mN .
(iv) After tangential velocity components have
been reversed in nk particles within a generic
volume element, Sk, on a total of Nk, a sec-
ond set of nk particles (among the remaining
Nk − nk) exists, where the tangential velocity
component of any particle equals its counter-
part belonging to the first set.
In the following, the above process shall be

quoted as ”the reversion process”.
Obviously, mean square tangential velocity

components, (v2
φr

), are left unchanged by the rever-
sion process. On the contrary, mean tangential ve-
locity components after the reversion process read:

vφr =
1
N

N∑

i=1

v
(i)
φr

=
1
N

[
2n∑

i=1

v
(i)
φr

+
N∑

i=2n+1

v
(i)
φr

]
,

(55)
where the first sum within brackets relates to parti-
cles where the reversion process has occurred and
their counterparts with equal tangential velocity
components, while the second sum comprises the re-
maining particles and necessarily equals the mean
tangential velocity component before the occurrence
of the reversion process, which is null in the case
under discussion. Accordingly, Eq. (55) reduces to:

vφr =
2n

N
(vφr )n , (56a)

(vφr
)n =

1
2n

2n∑

i=1

v
(i)
φr

=
1
n

n∑

i=1

v
(i)
φr

, (56b)

keeping in mind that the first sum is performed on
couples of particles with equal tangential velocity
components.

The validity of Eqs. (55) and (56) still holds if
tangential velocity components, vφr

, are replaced by
axial velocity components, vr. The combination of
Eqs. (49) and (56a) yields:

vCr = vr =
2n

N
(vr)n , (57)

which is the velocity component of the centre of in-
ertia with respect to the principal axis xr, after the
reversion process.

The total kinetic energy is left unchanged by
the reversion process but, a fraction of random mo-
tion kinetic energy is turned into systematic motion
kinetic energy. In the following, the reversion pro-
cess shall be discussed in more detail for a number
of different situations.

4.1. Tangential velocity component reversion

Performing the reversion process on a given
fraction of particles, n/N , with respect to tangential
velocity components, implies the conversion of ran-
dom (rotation) motion kinetic energy into systematic
(rotation) motion kinetic energy, as:

∆(Trdm)φrφr = −∆(Tsys)φrφr

= −1
2
M(vφr )

2 = −2n

N
nm[(vφr )n]2 , (58)

where the remaining parameters are left unchanged.
The occurrence of the reversion process im-

plies the following energy changes:

Trdm → Trdm − 2n

N
nm[(vφr )n]2 , (59)

(Trdm)φrφr → (Trdm)φrφr −
2n

N
nm[(vφr )n]2 , (60)

(Trdm)`` → (Trdm)`` − 1
2

2n

N
nm[(vφr )n]2 ,

` = s, t , (61)

Tsys → 0 +
2n

N
nm[(vφr )n]2 , (62)

(Tsys)φrφr → 0 +
2n

N
nm[(vφr )n]2 , (63)

(Tsys)`` → 0 +
1
2

2n

N
nm(vφr )

2
n , ` = s, t , (64)

while the contributions from random radial motions
in the equatorial plane, (Trdm)wrwr , and along the
rotation axis, (Trdm)rr, remain unchanged.

With the system being relaxed, ζ = 1, in the
case under discussion, the generalized and effective
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anisotropy parameters, ζpp and ζ̃pp, coincide with
their counterparts related to the usual tensor virial
equations, and Eqs. (46a) and (47a) take the explicit
form (C06):

ζ`` =
(1/3)Trdm − (2n/N)(n/2)m[(vφr )n]2

Trdm − (2n/N)nm[(vφr
)n]2

,

` = s, t , (65a)

ζrr =
(1/3)Trdm

Trdm − (2n/N)nm[(vφr
)n]2

, (65b)

where the special case, n = 0, relates to the initial
configuration, characterized by isotropic random ve-
locity component distributions (ζpp = 1/3) and no
figure rotation.

In the extreme case where the reversion pro-
cess is completed, n = N/2, the changes expressed
by Eqs. (59)-(64) take the form:

Trdm → Trdm − N

2
m[(vφr )N/2]2 , (66)

(Trdm)φrφr → (Trdm)φrφr −
N

2
m[(vφr )N/2]2 , (67)

(Trdm)`` → (Trdm)`` − N

4
m[(vφr )N/2]2 ,

` = s, t ; (68)

Tsys → 0 +
N

2
m[(vφr )N/2]2 , (69)

(Tsys)φrφr → 0 +
N

2
m[(vφr )N/2]2 , (70)

(Tsys)`` → 0 +
N

4
m[(vφr )N/2]2 , ` = s, t . (71)

Similarly, Eqs. (65) take the form:

ζ`` =
(1/3)Trdm − (N/4)m[(vφr )N/2]2

Trdm − (N/2)m[(vφr )N/2]2
,

` = s, t ; (72a)

ζrr =
(1/3)Trdm

Trdm − (N/2)m[(vφr )N/2]2
; (72b)

in any case, the anisotropy excess, ζ`` − ζrr < 0, is
counterbalanced by figure rotation.

4.2. Axial velocity component reversion

Performing the reversion process of axial ve-
locity components of given fraction of particles, n/N ,
implies the conversion of random (translation) mo-
tion kinetic energy into systematic (translation) mo-
tion kinetic energy, as:

∆(Trdm)rr = −∆(Tsys)rr

= −1
2
M(vr)2 = −2n

N
nm[(vr)n]2 , (73)

where the remaining parameters are left unchanged.
The reversion process implies the following en-

ergy changes:

Trdm → Trdm − 2n

N
nm[(vr)n]2 , (74)

(Trdm)rr → (Trdm)rr − 2n

N
nm[(vr)n]2 , (75)

Tsys → 0 +
2n

N
nm[(vr)n]2 , (76)

(Tsys)rr → 0 +
2n

N
nm[(vr)n]2 , (77)

while the contributions from random motions along
the principal axes xs and xt, (Trdm)ss and (Trdm)tt,
remain unchanged.

With the system being relaxed, ζ = 1, in the
case under discussion, the generalized and effective
anisotropy parameters, ζpp and ζ̃pp, coincide with
their counterparts related to the usual tensor virial
equations, and Eqs. (46a) and (47a) take the explicit
form:

ζ`` =
(1/3)Trdm

Trdm − (2n/N)nm[(vr)n]2
,

` = s, t ; (78a)

ζrr =
(1/3)Trdm − (2n/N)nm[(vr)n]2

Trdm − (2n/N)nm[(vr)n]2
, (78b)

where the special case, n = 0, refers to the initial
configuration, characterized by isotropic random ve-
locity component distributions (ζpp = 1/3) and no
figure rotation.

In the extreme case where the reversion pro-
cess is completed, n = N/2, the changes expressed
by Eqs. (74)-(77) take the form:

Trdm → Trdm − N

2
m[(vr)N/2]2 , (79)

(Trdm)rr → (Trdm)rr − N

2
m[(vr)N/2]2 , (80)

Tsys → 0 +
N

2
m[(vr)N/2]2 , (81)

(Tsys)rr → 0 +
N

2
m[(vr)N/2]2 , (82)

similarly, Eqs. (78) take the form:

ζ`` =
(1/3)Trdm

Trdm − (N/2)m[(vr)N/2]2
,

` = s, t ; (83a)

ζrr =
(1/3)Trdm − (N/2)m[(vr)N/2]2

Trdm − (N/2)m[(vr)N/2]2
; (83b)

in any case, the anisotropy excess, ζ`` − ζrr > 0, is
counterbalanced by figure (imaginary) rotation.
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4.3. Change of reference frame and imaginary
rotation

Performing the reversion process on a given
fraction of particles, n/N , implies the conversion of
random motion (translation) kinetic energy into sys-
tematic motion (translation) kinetic energy, with re-
spect to the principal axis xr, according to Eqs. (73)-
(77). The related kinetic-energy tensor component
of the centre of inertia, by use of Eqs. (57) and (73),
reads:

(TC)rr =
1
2
M(vr)2 =

2n

N
nm[(vr)n]2 = −∆(Trdm)rr,

(84)
which, in the case under discussion, coincides with
the kinetic energy of the centre of inertia, TC, since
(TC)ss = (TC)tt = 0. In the centre of inertia refer-
ence frame, the random motion kinetic-energy tensor
component related to the axis xr, (T ′rdm)rr, by use of
Eqs. (57) and (84), after the reversion process takes
the form:

(T ′rdm)rr =
1
2
m

N∑

i=1

[
v(i)

r − vCr

]2

= (Trdm)rr

−1
2
M(vr)2 = (Trdm)rr − (TC)rr, (85)

where the kinetic energy, TC = (TC)rr, is masked by
the change of reference frame (e.g. LL66, Chap. II,
§ 8).

Let the i-th particle be at the distance, w
(i)
r =

{[x(i)
s ]2 + [x(i)

t ]2}1/2, from the principal axis xr, with
velocity component, v

(i)
r . The imaginary angular ve-

locity (Caimmi 1996, C06, C07), iΩ(i)
r , can be defined

in such a way that the translational kinetic energy
along the axis xr is counterbalanced by the imag-
inary rotational kinetic energy around the xr axis,
i.e.

1
2
m[v(i)

r ]2 +
1
2
m

[
w(i)

r

]2 [
iΩ(i)

r

]2

= 0 , (86)

Ω(i)
r =

v
(i)
r

w
(i)
r

, (87)

where the index, i, refers to the i-th particle, and the
factor, i, is the imaginary unit. In this context, the
velocity components on the principal axis xr may be
translated into imaginary tangential velocity compo-
nents in the (O xs xt) principal plane, as:

(ivφr )
2 = (iwrΩr)2 = −v2

r ; (88)

according to Eqs. (86) and (87).
Let imaginary rotation around the axis xr be

imparted to the particles where the reversion pro-
cess has occurred, and their counterparts with equal
imaginary tangential velocity components, as pre-
scribed by Eq. (88), particularized to the mean axial
velocity component, vr, expressed by Eq. (57). The

related increment in imaginary rotational kinetic en-
ergy reads:

∆(Tsys)φrφr =
1
2
M(ivφr )

2 =
2n

N
nm[(ivφr )n]2 ,

(89)
and the combination of Eqs. (73), (84), (88), and (89)
yields:

∆(Tsys)φrφr
= −∆(Tsys)rr = −(TC)rr = ∆(Trdm)rr.

(90)
The above results may be reduced to a single state-
ment.

Theorem 1. Given an R fluid with isotropic
random velocity distribution and no figure ro-
tation, let the axial velocity component rever-
sion process be performed on a given fraction
of particles, n/N , with respect to the prin-
cipal axis xr. Then turning to the centre
of inertia reference frame with a kinetic en-
ergy loss, ∆(Tsys)rr = (TC)rr, is equivalent
to putting the initial configuration into imag-
inary rotation around the principal axis xr,
with square mean tangential velocity compo-
nent, (ivφr )

2 = −(vr)2, implying a kinetic en-
ergy gain, ∆(Tsys)φrφr = −(TC)rr.
Accordingly, Eqs. (74)-(77) are replaced by the

following:

Tsys → 0− 2n

N
nm[(vφr )n]2 , (91)

(Tsys)φrφr → 0− 2n

N
nm[(vφr )n]2 , (92)

(Tsys)`` → 0− 1
2

2n

N
nm[(vφr )n]2 , (93)

while the contributions from random motions remain
unchanged, and the random velocity distribution re-
mains isotropic (ζ11 = ζ22 = ζ33 = 1/3).

In the extreme case where the reversion pro-
cess is complete, n = N/2, and the maximum
amount of available imaginary rotation has been at-
tained, the changes expressed by Eq. (91)-(93) take
the form:

Tsys → 0− N

2
m[(vφr )N/2]2 , (94)

(Tsys)φrφr → 0− N

2
m[(vφr )N/2]2 , (95)

(Tsys)`` → 0− N

4
m[(vφr )N/2]2 , (96)

the above results may be reduced to a single state-
ment.

Theorem 2. Given an R fluid with isotropic
random velocity distribution and no figure ro-
tation, let the axial velocity component rever-
sion process be performed on a given fraction
of particles, n/N , with respect to the principal
axis xr, and the reference frame changed into
the centre of inertia reference frame, then the
resulting configuration with anisotropy excess,
ζ``−ζrr > 0, Eqs. (78), is equivalent to the ini-
tial configuration with null anisotropy excess,
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ζ`` − ζrr = 0, and imaginary rotation around
the principal axis xr, with square mean tan-
gential velocity component, (ivφr )

2 = −(vr)2.

4.4. Anisotropy excess and imaginary rotation

Consider a nonrotating (Ω̃r = 0) isotropic
(ζ11 = ζ22 = ζ33 = 1/3) configuration, and let the
tangential velocity component on the principal plane
(O xs xt) be reversed in such a way that Eqs. (66)-
(72) hold. Let an equal amount of real and imaginary
tangential velocity component on the principal plane
(O xs xt) be imparted to each particle for a total con-
tribution equal to (2/3)frTrdm and −(2/3)frTrdm,
respectively, where fr is a positive real number,
which leaves the total energy unchanged. Let the
reversion process be repeated for real tangential ve-
locity components, to attain a null figure (real) rota-
tion. The related changes, with respect to the initial
configuration, are:

Trdm →
(

1 +
2
3
fr

)
Trdm , (97)

(Trdm)φrφr → (Trdm)φrφr +
2
3
frTrdm , (98)

(Trdm)`` → 1
2

(
2
3

+
2
3
fr

)
Trdm , (99)

Tsys → 0− 2
3
frTrdm , (100)

(Tsys)φrφr → 0− 2
3
frTrdm , (101)

(Tsys)`` → 0− 1
2

2
3
frTrdm , (102)

and the related anisotropy parameters read:

ζ`` =
[(1/3) + (1/3)fr]Trdm

[1 + (2/3)fr]Trdm
=

1 + fr

3 + 2fr
,

` = s, t ; (103a)

ζrr =
(1/3)Trdm

[1 + (2/3)fr]Trdm
=

1
3 + 2fr

, (103b)

where the anisotropy excess, ζ`` − ζrr = fr/(3 +
2fr) > 0, is counterbalanced by imaginary rotation,
according to an initial configuration with isotropic
velocity component distribution and no figure rota-
tion. As application of the above results, two signi-
ficative examples will be considered.

First example. Systems flattened by
anisotropic velocity component distribution
(σ11 = σ22 > σ33) with no figure rotation.
Let tangential velocity components on the

principal plane (O x1 x2) be reversed in a conve-
nient fraction of particles, n/N , to yield a convenient
amount of figure rotation together with isotropic ve-
locity component distribution (σ′11 = σ′22 = σ33), as
sketched in Fig. 1.

The combination of Eqs. (53), (54), and (56a)
yields:

(Ω̃r)2 =
1

R2
Gr

4n2

N2
[(vφr

)n]2 ; (104)

(
σ

Ω̃rΩ̃r

)2

=
1

R2
Gr

(σφrφr )
2

=
1

R2
Gr

{
(v2

φr
)− 4n2

N2
[(vφr

)n]2
}

; (105)

while the mean square velocity components are left
unchanged in the reversion process. The substitution
of Eqs. (104) and (105) into (38b) and (38c) shows
the dependence of systematic and random motion
tangential kinetic-energy tensor components on the
reversion process.

In the case under discussion (r = 3), the
random velocity component distribution has to be
isotropic after the reversion process, which makes
Eqs. (61) and (64) to reduce to:

(Trdm)`` =
M

2
[
σ2

`` −
(
σ2

`` − σ2
33

)]
=

M

2
σ2

33 ;

` = 1, 2 ; (106)

(Tsys)`` =
M

2
(
σ2

`` − σ2
33

)
; ` = 1, 2 ; (107)

2n

N
nm[(vφr )n]2 =

1
2

4n2

N2
M [(vφr )n]2 =

M

2
(vφr )

2

=
M

2
(
σ2

`` − σ2
33

)
; (108)

which defines the configuration after the reversion
process.

Second example. Systems elongated by
anisotropic velocity component distribution
(σ11 = σ22 < σ33) with no figure rotation.
Let a convenient real and imaginary figure ro-

tations, vφ3 and ivφ3 , with respect to the principal
axis x3, be imparted to the system. Then the kinetic
energy remains unchanged. Concerning the real ro-
tation, let the reversion process be performed on one
half of the particles, leaving figure imaginary rotation
together with isotropic velocity component distribu-
tion (σ′11 = σ′22 = σ33), as sketched in Fig. 2.

Accordingly, Eqs. (104) and (105) hold for
imaginary tangential velocity components on the
principal plane (O x1 x2) and figure imaginary rota-
tion around the principal axis x3.

In the case under discussion (r = 3), an
isotropic velocity component distribution after the
reversion process implies the validity of Eqs. (106),
(107), and (108), where the tangential velocity com-
ponents are imaginary (σ`` < σ33), and the config-
uration after the reversion process is completely de-
fined.
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Fig. 1. After reversion of tangential velocity components for a convenient fraction of particles, with respect
to the principal plane (Ox1x2), a configuration flattened by anisotropic velocity component distribution (σ11 =
σ22 > σ33) with no figure rotation (vφ3 = 0), (left), is turned into a configuration flattened by figure rotation
vφ3 = (σ2

11 − σ2
33)

1/2 = (σ2
22 − σ2

33)
1/2 with isotropic velocity component distribution (σ′11 = σ′22 = σ33),

(right). The symbol, f, denotes figure rotation about the corresponding principal axis.

Fig. 2. After imparting a convenient figure real and imaginary rotations, vφ3 and ivφ3 , with respect to
the principal axis x3, to the system, and reversing real tangential velocity components on one half of the
particles, a configuration elongated by anisotropic velocity component distribution (σ11 = σ22 < σ33) with
no figure rotation (vφ3 = 0), (left), is turned into a configuration elongated by figure (imaginary) rotation
ivφ3 = (σ2

11 − σ2
33)

1/2 = (σ2
22 − σ2

33)
1/2 with isotropic velocity component distribution (σ′11 = σ′22 = σ33),

(right). The symbol, f, denotes figure rotation about the corresponding principal axis.

32



R FLUIDS

4.5. Tangential velocity component reversion
in the general case

In the general case of anisotropic velocity com-
ponent distribution (σ11 6= σ22 6= σ33) and figure ro-
tation around each principal axis (Ω̃1 6= Ω̃2 6= Ω̃3 6=
0), with regard to the principal plane (O xs xt), let
the tangential velocity component reversion process
be applied to one half of the particles in such a way
that no figure rotation about the principal axis xr

occurs, Ω̃r = 0. Keeping in mind Eqs. (51)-(54), the
corresponding energy changes read:

(Trdm)φrφr
→ (Trdm)φrφr

+
1
2
M(vφr )

2 , (109)

(Tsys)φrφr
→ (Tsys)φrφr

− 1
2
M(vφr

)2 = 0 , (110)

vφr
= (vφr

)N/2 =
1
N

N∑

i=1

v
(i)
φr

, (111)

∆(Tsys)φrφr = −∆(Trdm)φrφr = −1
2
M(vφr )

2

= −1
2
MR2

Gr(Ω̃r)2 , (112)

[(Trdm)φrφr ]`` + [(Trdm)wrwr ]`` =
1
2
Mσ2

`` ,

` = 1, 2 ; (113)

(Trdm)rr =
1
2
Mσ2

rr , (114)

where the rms velocity components, σ2
`` and σ2

rr, per-
tain to the initial configuration.

The changes in anisotropy parameters, ζpp =
σ2

pp/σ2, read:

ζ`` → ζ`` + (1/2)∆ζ``

1 + ∆ζ``
; ` = s, t ; (115a)

ζrr → ζrr

1 + ∆ζ``
; (115b)

∆ζ`` =
(vφr )

2

σ2
; ` = s, t ; (115c)

where the rms velocity, σ2, pertain to the initial con-
figuration.

The application of the above procedure to the
principal axes x1 and x2, makes the transition from
an initial configuration with rms velocity compo-
nents σ2

11, σ2
22, σ2

33, and figure rotation around the
principal axes Ω̃1, Ω̃2, Ω̃3, to a final configuration
with rms velocity components (σ′11)

2, (σ′22)
2, (σ′33)

2,
and figure rotation around the principal axes 0, 0,
Ω̃3. The corresponding energy changes read:

(Trdm)11 → (Trdm)11 +
1
4
M(vφ2)

2 , (116)

(Trdm)22 → (Trdm)22 +
1
4
M(vφ1)

2 , (117)

(Trdm)33 → (Trdm)33 +
1
4
M

[
(vφ1)

2 + (vφ2)
2
]
, (118)

Trdm → Trdm +
1
2
M

[
(vφ1)

2 + (vφ2)
2
]

, (119)

(Trdm)pp =
1
2
Mσ2

pp , p = 1, 2, 3 , (120)

and the pertaining changes in anisotropy parameters
are:

ζ11 → ζ11 + (1/2)∆ζ11

1 + ∆ζ11 + ∆ζ22
, (121a)

ζ22 → ζ22 + (1/2)∆ζ22

1 + ∆ζ11 + ∆ζ22
, (121b)

ζ33 → ζ33 + (1/2)[∆ζ11 + ∆ζ22]
1 + ∆ζ11 + ∆ζ22

, (121c)

∆ζ11 =
(vφ2)

2

σ2
, ∆ζ22 =

(vφ1)
2

σ2
. (121d)

The above results may be reduced to a single state-
ment.

Theorem 3. Given an R fluid, a conve-
nient application of the tangential velocity
component reversion process produces an ad-
joint configuration where figure rotation oc-
curs around a single principal axis, that is an
R3 fluid.
Accordingly, the results valid for R3 fluids

(C07) may be extended to the general case of R flu-
ids.

5. DISCUSSION

As suggested in earlier attempts (Caimmi
1996, C06, C07), the equivalence between a varia-
tion in figure rotation and in anisotropy excess, may
provide a useful tool for the description of collision-
less fluids. The discussion here shall be focused on
the spin parameter (Peebles 1969, 1971):

λ2 = − J2E

G2M5
; (122)

where G is the gravitational constant, M the total
mass, J the total angular momentum, and E the
total energy. The above formulation includes four
possibilities, namely (i) real rotation (J2 ≥ 0) and
bound system (E < 0), which is the sole currently
used in literature; (ii) imaginary rotation (J2 < 0)
and bound system (E < 0); (iii)real rotation (J2 ≥
0) and unbound system (E ≥ 0); (iv) imaginary ro-
tation (J2 < 0) and unbound system (E ≥ 0). Ac-
cordingly, the spin parameter attains real values in
cases (i) and (iv), and imaginary values in cases (ii)
and (iii).

In the light of the current model, oblate-like
and prolate-like configurations belong to cases (i)
and (ii) outlined above, while cases (iii) and (iv) rep-
resent unbound structures for which the virial equa-
tions do not hold. Therefore, the comparison with
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observations and/or computations must be restricted
to bound configurations.

The spin parameter distribution is usually fit-
ted using a lognormal distribution (e.g. van den Bosh
1998, Gardner 2001, Ballin and Steinmetz 2005, Her-
nandez et al. 2007) or, in general, one dependent on
log λ (e.g. Bett et al. 2007), in dealing with real
rotation. The inclusion of imaginary rotation would
imply use of λ2 instead of λ as independent variable,
allowing for both positive (real rotation) and nega-
tive (imaginary rotation) values.

The following procedure should be followed for
calculating λ2 from observations and/or computa-
tions: (1) determine the inertia tensor and the prin-
cipal axes of inertia for a given matter distribution;
(2) determine the potential-energy tensor; (3) deter-
mine the anisotropy parameters using the general-
ized virial equations; (4) perform the reversion pro-
cess with respect to two principal axes of inertia to
leave figure rotation around the third one (R3 fluid);
(5) convert the anisotropy excess into figure (real or
imaginary) rotation to obtain isotropic velocity com-
ponent distribution (ζ11 = ζ22 = ζ33); (6) evaluate
the spin parameter; (7) act as already done for all the
sample objects; (8) determine the distribution of the
spin parameter, P (λ2), with respect to the sample of
adjoint configurations, where the velocity component
distribution is isotropic.

The related results could provide further in-
sight on formation and evolution of large-scale colli-
sionless fluids, such as galaxies and galaxy clusters.

6. CONCLUSION

A theory of collisionless fluids was developed
in a unified picture, where the nonrotating (Ω̃1 =
Ω̃2 = Ω̃3 = 0) figures with specified random veloc-
ity component distributions, and the rotating (Ω̃1 6=
Ω̃2 6= Ω̃3) ones with different random velocity com-
ponent distributions, make adjoint configurations to
the same system. R fluids have been defined as ideal,
self-gravitating fluids satisfying the virial theorem as-
sumptions (e.g. LL66, Chap. II, § 10; C07), in pres-
ence of figure rotation around each principal axis of
inertia.

To this aim, mean and rms angular velocities
and mean and rms tangential velocity components
have been expressed, by weighting on the moment of
inertia and the mass, respectively. The figure rota-
tion has been defined as the mean angular velocity,
weighted on the moment of inertia, with respect to
a selected axis.

The generalized tensor virial equations
(Caimmi and Marmo 2005) were formulated for R
fluids and further attention was devoted to axisym-
metric configurations where, for selected coordinate
axes, a variation in figure rotation has to be coun-
terbalanced by a variation in anisotropy excess and

vice versa.
A microscopical analysis of systematic and

random motions was performed under a number of
general hypotheses, by reversing the sign of tangen-
tial or axial velocity components of an specified frac-
tion of particles, leaving the distribution function
and other parameters unchanged (Meza 2002).

The application of the reversion process to
tangential velocity components, was found to imply
the conversion of random motion rotation kinetic en-
ergy into that of systematic motion. The application
of the reversion process to axial velocity components
was found to imply the conversion of random mo-
tion translation kinetic energy into systematic mo-
tion translation kinetic energy, and the loss related
to a change of reference frame has been expressed
in terms of systematic motion (imaginary) rotation
kinetic energy.

A number of special situations was investi-
gated in more detail. It was found that an R fluid
always allows an adjoint configuration where figure
rotation takes place about only one principal axis of
inertia (R3 fluid), which implies that all the results
related to R3 fluids (Caimmi 2007) may be extended
to R fluids.

Finally, a procedure has been sketched for
deriving the spin parameter distribution (including
imaginary rotation) from a sample of observed or
simulated large-scale collisionless fluids i.e. galaxies
and galaxy clusters.
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Razvijena je objediǌena teorija bez-
sudarnog fluida u kojoj nerotiraju�a tela
(Ω̃1 = Ω̃2 = Ω̃3 = 0) sa pripisanom raspodelom
sluqajnih brzina komponenata i rotiraju�a
tela (Ω̃1 6= Ω̃2 6= Ω̃3) sa razliqitom raspode-
lom sluqajnih brzina komponenata qine ad-
jungovane konfiguracije istog sistema. R
fluidi su definisani kao idealni, samogra-
vitiraju�i fluidi koji zadovoǉavaju pret-
postavke teoreme virijala, sa sistematskom
rotacijom oko svake od glavnih osa iner-
cije. Sredǌa ugaona brzina i standardna de-
vijacija, kao i sredǌa tangencijalna brzina
i standardna devijacija svake od komponenata
izra�ene su tako da su moment inercije i
masa predstavǉene odgovaraju�im te�inama.
Rotacija tela je definisana preko sredǌe
ugaone brzine sa ote�iǌenim momentom iner-
cije u odnosu na odabranu osu. Postavǉene su
generalizovane tenzorske virijalne jednaqine
(Caimmi and Marmo 2005) za R fluide i daǉa
pa�ǌa je posve�ena osnosimetriqnim konfi-
guracijama kod kojih, za izabrane koordi-
natne ose, varijacije u rotaciji tela moraju
biti uravnote�ene varijacijama u meri ani-
zotropije, i obrnuto. Mikroskopska analiza
sistematskog i neure�enog kretaǌa izvrxena
je u skladu sa odre�enim opxtim hipotezama,
izmenom znaka tangencijalnih i aksijalnih

komponenata brzine izabranog skupa qestica,
ostavǉaju�i pri tom funkciju raspodele i
druge parametre nepromeǌenim (Meza 2002).
Iz primene procedure izmene znaka tangen-
cijalnih komponenata brzina sledi konverzi-
ja kinetiqke energije neure�enog kretaǌa u
kinetiqku energiju sistematskog rotacionog
kretaǌa. Iz primene procedure izmene
znaka aksijalnih komponenata brzina sledi
konverzija kinetiqke energije translacije
neure�enog kretaǌa u kinetiqku energiju
translacije sistematskog kretaǌa, dok je gu-
bitak povezan sa promenom sistema referen-
ce predstavǉen preko kinetiqke energije (ima-
ginarnog) sistematskog rotacionog kretaǌa.
Detaǉno je prouqen i odre�en broj speci-
jalnih sluqajeva. Na�eno je da R fluid
uvek dozvoǉava adjungovanu konfiguraciju
kod koje se rotacija tela odvija oko samo
jedne glavne ose inercije (R3 fluid), odakle
sledi da se svi rezultati dobijeni za R3 flu-
ide (Caimmi 2007) mogu proxiriti na R flu-
ide. Na kraju, skicirana je procedura za
izvo�eǌe funkcije raspodele parametra spina
(ukǉuquju�i imaginarnu rotaciju) na osnovu
uzorka posmatranih ili simuliranih bezsu-
darnih fluida na velikim skalama, tj. galak-
sija i jata galaksija.

35


