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SUMMARY: On the basis of earlier investigations on homeoidally striated Mac
Laurin spheroids and Jacobi ellipsoids (Caimmi and Marmo 2005, Caimmi 2006a,
2007), different sequences of configurations are defined and represented in the

ellipticity-rotation plane, (Oêχ2
v). The rotation parameter, χ2

v, is defined as the

ratio, Erot/Eres, of kinetic energy related to the mean tangential equatorial velocity

component, M(vφ)2/2, to kinetic energy related to tangential equatorial component

velocity dispersion, Mσ2
φφ/2, and residual motions, M(σ2

ww +σ2
33)/2. Without loss

of generality (above a threshold in ellipticity values), the analysis is restricted to
systems with isotropic stress tensor, which may be considered as adjoint configu-
rations to any assigned homeoidally striated density profile with anisotropic stress
tensor, different angular momentum, and equal remaining parameters. The de-

scription of configurations in the (Oêχ2
v) plane is extended in two respects, namely

(a) from equilibrium to nonequilibrium figures, where the virial equations hold
with additional kinetic energy, and (b) from real to imaginary rotation, where the
effect is elongating instead of flattening, with respect to the rotation axis. An ap-

plication is made to a subsample (N = 16) of elliptical galaxies extracted from

richer samples (N = 25, N = 48) of early type galaxies investigated within the
SAURON project (Cappellari et al. 2006, 2007). Sample objects are idealized as
homeoidally striated MacLaurin spheroids and Jacobi ellipsoids, and their position

in the (Oêχ2
v) plane is inferred from observations following a procedure outlined

in an earlier paper (Caimmi 2009b). The position of related adjoint configurations
with isotropic stress tensor is also determined. With a single exception (NGC 3379),

slow rotators are characterized by low ellipticities (0 ≤ ê < 0.2), low anisotropy pa-

rameters (0 ≤ δ < 0.15), and low rotation parameters (0 ≤ χ2
v < 0.15), while

fast rotators show large ellipticities (0.2 ≤ ê < 0.65), large anisotropy parameters

(0.15 ≤ δ < 0.35), and large rotation parameters (0.15 ≤ χ2
v < 0.5). An alter-

native kinematic classification with respect to earlier attempts (Emsellem et al.
2007) requires larger samples for providing additional support to the above men-
tioned results. A possible interpretation of slow rotators as nonrotating at all and
elongated due to negative anisotropy parameters, instead of flattened due to pos-
itive anisotropy parameters, is exploited. Finally, the elliptical side of the Hubble
morphological sequence is interpreted as a sequence of equilibrium (adjoint) config-
urations where the ellipticity is an increasing function of the rotation parameter,
slow rotators correspond to early classes (E0-E2 in the oblate limit and E2-E0 in
the prolate limit) and fast rotators to late classes (E3-E6). In this view, boundaries
are rotationally distorted regardless of angular momentum and stress tensor, where
rotation has to be intended as due to additional kinetic energy of tangential equa-
torial velocity components, with respect to spherical configurations with isotropic
stress tensor.

Key words. Galaxies: kinematics and dynamics - Galaxies: elliptical and lenticular,
cD
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1. INTRODUCTION

According to their original classification (Hub-
ble 1926), elliptical galaxies are subdivided into eight
classes, designated E0, E1, ..., E7, the numerical in-
dex being the integer nearest to 10ê, where ê is the
ellipticity of related galaxies as projected on the sky,
and 0 ≤ ê ≤ 0.7 is inferred from observations1. Hub-
ble’s original scheme has generally been considered
satisfactory, but the physical explanation of the dis-
torted boundary changed in time.

The classical interpretation starts from the ev-
idence that (i) all celestial bodies are known to ro-
tate, and (ii) the symmetry of figure shown by ellip-
tical galaxies is precisely the one rotation might be
expected to produce; which, in turn, suggests (iii)
an inquiry as to what extent the observed figures
of elliptical galaxies can be explained as the figures
assumed by masses rotating under their own grav-
itation. In this view, boundaries are distorted by
systematic rotation around the minor axis, i.e. the
angular momentum parallel to the rotation axis. For
further details refer to the source textbook (Jeans
1929, Chap. XIII, §§299-302) and to recent attempts
(e.g. Caimmi 2006b).

About fourty years ago, observations begun to
offer increasing evidence that (giant) elliptical galax-
ies cannot be sustained by systematic rotation (e.g.
Bertola and Capaccioli 1975, Binney 1976, Illing-
worth 1977, 1981, Schechter and Gunn 1979). Ac-
cordingly, (giant) elliptical galaxies were conceived
as systems with triplanar symmetry and ellipsoidal
boundaries set up by specific anisotropic stress ten-
sor (Binney 1976, 1978, 1980) and a negligible con-
tribution from angular momentum. As shown by the
high-resolution simulations, the same holds also for
(nonbaryonic) dark matter haloes hosting galaxies
and clusters of galaxies (e.g. Hoeft et al. 2004, Ra-
sia et al. 2004, Bailin and Steinmetz 2004). In this
view, boundaries are distorted by systematic rota-
tion around the minor axis and/or anisotropic stress
tensor.

It is worth mentioning that an anisotropic
stress tensor does not imply orbital anisotropy and
vice versa. With regard to e.g. nonrotating systems,
and leaving aside instabilities, orbits could be only
radial or only circular, and the shape maintained
spherical or flat. On the other hand, anisotropic
stress tensors yield distorted boundaries (e.g. Binney
1976, 2005, the latter hereafter quoted as B05). The
extent to which angular momentum and anisotropic
stress tensor are effective in determining the shape of
a system, may be quantified by the ratio, χ2

v, of ki-
netic energy due to figure rotation to kinetic energy
due to remaining motions. It is, in turn, related to
a squared velocity ratio, (χ2

v)obs, inferred from ob-
servations. For assigned density profiles, the depen-
dence of the rotation parameter on the shape may
be determined using the tensor virial theorem.

In the special case of homeoidally striated el-
lipsoids, where the isopycnic (i.e. constant density)
surfaces are similar and similarly placed (Roberts
1962), the rotation parameter, χv, has been explic-
itly expressed as a function of the ellipticity, ê, re-
stricted to oblate shapes (Binney 1976). Configura-
tions with assigned anisotropic stress tensor are rep-
resented on the (Oêχv) plane as a family of curves
which branch off from the origin, (ê, χv) = (0, 0),
and increase for increasing ellipticity. The curve re-
lated to the isotropic stress tensor makes an upper
limit, while their counterparts characterized by an
anisotropic stress tensor (σ11 = σ22 > σ33) lie below
(Binney 1976).

The tidal action from an embedding, nonbary-
onic dark halo makes the shape of the embedded el-
liptical galaxy closer to its own. In other words, a less
flattened dark halo makes a less flattened embedded
elliptical galaxy, and vice versa. Accordingly, a fam-
ily of curves depending on two parameters, namely
the fractional mass, m = Mhalo/Megal, and the axis
ratio of the dark halo (assumed to be axisymmetric),
εhalo, can fit the data on the (Oêχv) plane even if the
stress tensor is isotropic (Caimmi 1992).

The rotation parameter, χv, is independent
of the density profile for homeoidally striated ellip-
soids (Roberts 1962, Binney 1976) which, in general,
make only a first approximation to equilibrium con-
figurations, (e.g. Vandervoort 1980b, Vandervoort
and Welty 1981, Lai et al. 1993). With regard to
equilibrium configurations, e.g. polytropes (Vander-
voort 1980a), the rotation parameter, χv, depends
on the density profile (Caimmi 1980). Accordingly,
a family of curves depending on a single parameter,
namely the polytropic index, n, can fit the data on
the (Oêχv) plane even if the stress tensor is isotropic
(Vandervoort 1980a, Caimmi 1983).

Systematic rotation and anisotropic stress ten-
sor are effective to the same extent in flattening
or elongating a spherical shape, provided imaginary
rotation (around the major axis) is considered in
the latter case (Caimmi 1996b, 2007, 2008, the last
two references quoted hereafter as C07, C08, respec-
tively). The key concept is that the distribution
function is independent of the sign of tangential ve-
locity components, and the whole set of possible con-
figurations is characterized by an equal amount of
both kinetic and potential energy (Lynden-Bell 1960,
1962, Meza 2002).

In other words, clockwise and counterclock-
wise tangential velocity components are indistin-
guishable in this respect, and no change in shape oc-
curs for any configuration between the limiting cases:
(i) equal clockwise and counterclockwise tangential
equatorial velocity components, which implies a null
mean value; (ii) only clockwise or counterclockwise
tangential equatorial velocity components, which im-
plies a maximum or minimum (according to the sign)
mean value. In particular, a single configuration ex-

1In modern classifications, galaxies within the class E7 are considered as lenticulars instead of ellipticals (for further details
refer to e.g. Caimmi 2006b, van den Bergh 2009), but this is irrelevant to the aim of the current investigation. For this reason,
Hubble’s original classification shall be used in the following.
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ists with isotropic stress tensor, to be conceived as
”adjoint” to its generic counterpart with anisotropic
stress tensor. The above considerations hold above a
threshold in ellipticity (ê ≥ êadj) which, on the other
hand, lies below the threshold for elliptical galax-
ies (ê ≥ êell ≥ êadj). Accordingly, elliptical galaxies
always admit adjoints configurations with isotropic
stress tensor.

The tensor virial theorem provides a rigorous
global link between angular momentum, anisotropic
stress tensor and shape, but the quantities appearing
therein cannot easily be deduced from observations.
A classical approximation to the rotation parameter,
χv, is (χv)obs = Vmax/σ0, where Vmax is the peak ro-
tation velocity and σ0 a centrally averaged velocity
dispersion, both projected on the line of sight (e.g.
Illingworth 1977, 1981, Schechter and Gunn 1979).
With the appearance of integral-field spectroscopy
(Bacon et al. 2002, de Zeeuw et al. 2002, Kelz et
al. 2003), a rigorous connection can be established
between the tensor virial theorem and observations,
provided that the former is reformulated in terms of
sky-averages. In particular, the rotation parameter
inferred from the data is

(χv)obs =< ṽ2
‖ >1/2 / < σ̃2

‖ >1/2 ,

where ṽ‖ is the mean velocity projected on the line of
sight, σ̃2

‖ is the related variance, and < ṽ2
‖ >, < σ̃2

‖ >,
are sky-averages with respect to the mass (B05).

In general, the expression for the rotation pa-
rameter depends on what is understood by rotation
energy. Usually, the kinetic energy is decomposed
into contributions from ordered and random motions
(e.g. B05). In the current attempt, the kinetic en-
ergy shall be decomposed into contributions from
cylindrical rotation, M(vφ)2/2, and tangential equa-
torial component velocity dispersion, Mσ2

φφ/2, plus
residual motions, M(σ2

ww + σ2
33)/2; the rotation pa-

rameter, χ2
v, shall be defined as the ratio of the first

to the sum of the remaining two above mentioned
terms.

In this view, an extension to nonequilibrium
configurations and imaginary rotation appears quite
natural, in the light of a general theory where bound-
aries are distorted by angular momentum and/or
anisotropic stress tensor (C07, C08) and triaxial
configurations due to the occurrence of bifurcation
points are also considered (Caimmi 1996a,b, 2006a,b,
CM05). In dealing with imaginary tangential equa-
torial velocity components, the rotation parameter,
χ2

v, has to be used instead of χv, where positive and
negative values are related to real and imaginary an-
gular momentum, respectively.

The present investigation is mainly devoted to
the following points: (i) representation of nonequi-
librium figures on the (Oêχ2

v) plane, restricted to
homeoidally striated MacLaurin spheroids and Ja-
cobi ellipsoids and edge-on orientations with the ma-
jor axis perpendicular to the line of sight; (ii) loca-
tion in the (Oêχ2

v) plane of elliptical galaxies with

assigned inclination angle and anisotropy parame-
ter, restricted to axisymmetric shapes and classified
as fast and slow rotators (Cappellari et al. 2006,
2007, hereafter quoted as S IV and S X, respectively);
(iii) extent to which nonequilibrium figures fit el-
liptical galaxies; (iv) interpretation of slow rotators
as intrinsically prolate, nonrotating bodies, and re-
lated location in the (Oêχ2

v) plane; (v) representation
of adjoint configurations in imaginary rotation with
isotropic stress tensor.

The work is organized as follows. The rota-
tion parameter, χ2

v, is expressed as a function of the
intrinsic meridional ellipticity, ê, for equilibrium and
nonequilibrium figures with isotropic stress tensor,
in Section 2. The position of elliptical galaxies in
the (Oêχ2

v) plane, with regard to a restricted sam-
ple for which plansible values of the inclination an-
gle and the anisotropy parameter can be assigned,
together with their adjoint configurations where the
stress tensor is isotropic, is determined in Section 3.
A comparison with earlier attempts is made in Sec-
tion 4. The possibility that slow rotators are in fact
prolate, nonrotating bodies, is exploited in Section
5, where an interpretation of the elliptical side of the
Hubble sequence is also proposed. The conclusion is
drawn in Section 6.

2. THE NONEQUILIBRIUM FIGURES

Given a mass distribution with assigned rota-
tion axis, x3, the kinetic energy is usually decom-
posed into contributions from ordered and random
motion (e.g. B05), where the former arises from
mean velocity components within any infinitesimal
volume element, and the latter from related variances
which appear in the expression of the stress tensor.
In this view, the contribution of streaming motion to
velocity dispersion (along a selected direction) is not
included in the stress tensor.

A different approach shall be exploited in the
current attempt. More specifically, the kinetic en-
ergy shall be conceived as the sum of two contri-
butions: one, related to either the mass-weighted
tangential equatorial velocity component, M(vφ)2/2,
or the moment-of-inertia-weighted angular velocity,
I3(Ω)2/2, and the other relied to the contribution
of the related velocity dispersion plus the remaining
velocity components, radial equatorial, (v2

w), and ra-
dial polar, (v2

3). The above contributions shall be
hereafter quoted as rotation kinetic energy, Erot, and
residual kinetic energy, Eres, respectively. In this
way, the contribution of streaming motion to veloc-
ity dispersion (along a selected direction) is included
in the stress tensor.

It is worth mentioning that the mass-weighted
tangential equatorial velocity component and the
moment-of-inertia-weigthted angular velocity yield
different kinetic energy values (for a formal discus-
sion see Appendix A1). As the current investigation
deals with linear velocities, only the former will be
considered here.
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If the tensor virial theorem holds only for
time-averaged quantities, the related mass distribu-
tion can no longer be considered to be in dynamical
or hydrostatic equilibrium; but still in virial equi-
librium (C07), which gives rise to a special kind of
nonequilibrium figures. In the following, ”nonequi-
librium” has to be understood as ”far from dy-
namical or hydrostatic equilibrium but still in virial
equilibrium”. For nonequilibrium figures, the ten-
sor virial equations must be related to an adjoint
configuration with equal density profile and rotation
energy, but different residual-energy tensor compo-
nents, (Ẽres)pp = ζppEres. The result is (C07):

2(Erot)qq + 2ζqqEres + (Epot)qq = 0 ; q = 1, 2 ;(1a)
2ζ33Eres + (Epot)33 = 0 ; (1b)

where (Epot)pq is the potential-energy tensor and
the coefficients, ζpp, may be understood as general-
ized anisotropy parameters (CM05, Caimmi 2006a,b,
C07). The combination of Eqs. (1a) and (1b) yields:

2(Erot)qq − ζqq

ζ33
(Epot)33 + (Epot)qq = 0; q = 1, 2;(2a)

2Eres = − 1
ζ33

(Epot)33 ; (2b)

and the potential-energy tensor for homeoidally stri-
ated Jacobi ellipsoids reads (CM05):

(Epot)pq = −GM2

a1
νsel(Bsel)pq ; p, q = 1, 2, 3 ;(3a)

(Bsel)pq = δpqεp2εp3Ap ; Bsel =
3∑

s=1

εs2εs3As ; (3b)

where δpq is the Kronecker symbol, G the constant
of gravitation, νsel a profile factor (i.e. depending
only on the density profile), ap are the semiaxes,
εpq = ap/aq axis ratios, Ap shape factors (i.e. de-
pending only on the axis ratios).

The substitution of Eqs. (3), (42), (43), into
(2) yields after some algebra:

(vφ)2 =
GM

a1
νsel

[
Bsel − ζ

ζ33
(Bsel)33

]
; (4a)

σ2
φφ + σ2

ww + σ2
33 =

GM

a1
νsel

1
ζ33

(Bsel)33 ; (4b)

ζ = ζ11 + ζ22 + ζ33 ; (4c)

ζ

ζpp
=

Ẽres/Eres

(Ẽres)pp/Eres

=
1

ζ̃pp

; (4d)

ζ̃pp =
(Ẽres)pp

Ẽres

; (4e)

where the anisotropy parameters, ζ̃pp, are related to
equilibrium figures (CM05, C07, C08).

The expression for rotation parameter, χ2
v =

Erot/Eres, by use of Eqs. (4) and (43) assumes the
explicit form:

χ2
v =

(vφ)2

σ2
= ζ

[
ζ̃33

Bsel

(Bsel)33
− 1

]
; (5a)

σ2 = σ2
φφ + σ2

ww + σ2
33 = σ2

11 + σ2
22 + σ2

33 ; (5b)

which, for assigned values of the anisotropy param-
eters, depends only on the axis ratios. In an earlier
attempt (CM05) a different definition of rotation pa-
rameter has been used, in terms of a mean squared
velocity, < v2

rot >, instead of the related squared
mean velocity, < vrot >2, and this implies different
anisotropy parameters for equal shapes and rotation
parameters, in the two formulations. The current
definition is more strictly connected with observa-
tions i.e. mean velocities and velocity dispersions.
The factor within brackets in Eq. (5a) corresponds
to equilibrium figures (ζ = 1, ζpp = ζ̃pp), while the
virial index, ζ = Ẽres/Eres, is a measure of the de-
parture from equilibrium (0 ≤ ζ < +∞).

For homeoidally striated Jacobi ellipsoids, the
anisotropy parameters, ζ11, ζ22, are related to the
diagonal components of the moment-of-inertia ten-
sor, I11, I22, and a necessary and sufficient condition
for the stress tensor to be isotropic, is ζ33 = 1/3.
In addition, bifurcation points are independent of
the angular momentum and the stress tensor, and
may be related to the adjoint configuration where
the squared angular momentum attains a maximum
or a minimum value (according to the sign) and the
stress tensor is isotropic. This is why the effect of
an anisotropic stress tensor is equivalent to an addi-
tional real or imaginary rotation, inducing flattening
(on the equatorial plane) or elongation (on the ro-
tation axis), respectively. For further details refer
to the source paper (C07) and Appendix A2. More
specifically, real or imaginary rotation take place
when the factor within brackets in Eq. (5a) is pos-
itive or negative, respectively.

Given a nonequilibrium figure with assigned
anisotropy parameters, ζpp, the particularization of
Eq. (5a) to the adjoint configuration with isotropic
stress tensor (ζ̃33 = 1/3) yields:

(χ2
v)iso = ζ

[
1
3

Bsel

(Bsel)33
− 1

]
; (6)

which can be plotted as a function of the meridional
ellipticity, ê = 1 − ε31, where ê > 0 implies real
rotation, ê = 0 no rotation, and ê < 0 imaginary
rotation. Cases within the range, 1/2 ≤ ζ ≤ 2, are
plotted in Fig. 1, where the solid line corresponds to
equilibrium figures (ζ = 1), and the upper in the
first quadrant (ζ = 1.1, 1.2, ..., 2.0) and the lower in
the first quadrant (ζ = 1/1.1, 1/1.2, ..., 1/2.0) dotted
curves correspond to nonequilibrium figures. Points
lying in the first and the third quadrant represent
systems in real and imaginary rotation, respectively.
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Fig. 1. The rotation parameter, χ2
v, as a function of the meridional ellipticity, ê = 1 − ε31, for sequences

of equilibrium (solid) and nonequilibrium (dotted) figures with isotropic stress tensor. For equilibrium fig-
ures, ζ = Ẽres/Eres = 1. For nonequilibrium figures, ζ = 1.1, 1.2, ..., 2.0 (above the equilibrium sequence
in the first quadrant), and ζ = 1/1.1, 1/1.2, ..., 1/2.0 (below the equilibrium sequence in the first quadrant).
Configurations lying in the first and third quadrant are in real and imaginary rotation, respectively. Non-
rotating configurations are placed at the origin. Vertical lines mark: dotted - bifurcation from axisymmetric
to triaxial configurations; dashed - bifurcation from triaxial (left) and axisymmetric (right) to pear-shaped
configurations; dot-dashed - onset of dynamical instability in axisymmetric configurations.

The origin is the locus of nonrotating systems.
The loci of different bifurcation points are repre-
sented by different vertical lines, namely: from ax-
isymmetric to triaxial configurations (dotted); from
triaxial (left) and axisymmetric (right) to pear-
shaped configurations (dashed); and, in addition:
the onset of dynamical instability in axisymmetric
configurations (dot-dashed). The first and the third
quadrant can completely be filled with curves com-
puted by Eq. (6), where the limiting case, ζ = 0,
corresponds to flat configurations with no centrifu-
gal support, and the limiting case, ζ → +∞, cor-
responds to nonflat configurations with no pressure
support.

In the general case of anisotropic stress ten-
sor, conformly to Eq. (5a), the trend in the (Oêχ2

v)
plane is similar but the curves are shifted to the
right (nonrotating flattened configurations) or to the
left (nonrotating elongated configurations), provided
σ2

11 = σ2
22 > σ2

33 or σ2
11 = σ2

22 < σ2
33, respectively. In

any case, the adjoint equilibrium configurations with

isotropic stress tensor lie on the related sequence
(solid line in Fig. 1) with unchanged axes, which im-
plies a vertical shift of a selected point in the (Oêχ2

v)
plane, until the adjoint configuration is reached.

3. COMPARISON WITH OBSERVATIONS

In order to compare the model predictions
with the data from observations, the position of el-
liptical galaxies in the (Oêχ2

v) plane will be deter-
mined. The sample used (Caimmi and Valentin-
uzzi 2008, Caimmi 2009b, hereafter quoted as CV08
and C09, respectively) is extracted from larger sam-
ples of early-type galaxies investigated within the
SAURON project (S IV, N=25; S X, N=48). All
galaxies common to both samples (N = 24) have
been modeled to infer the inclination angle (S IV)
and the anisotropy parameter (S X), including 16 E
(numerical morphological T -type, T ≤ −3.0) and 8
S0 (−3.0 < T ≤ −0.5). The former makes the final
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sample (N = 16), as the current attempt is restricted
to elliptical galaxies for which the intrinsic properties
can be determined by the knowledge of the inclina-
tion angle and the anisotropy parameter.

The following quantities may directly be de-
duced or derived from observations: the effective
(half-light) radius, Re; the stellar mass within the ef-
fective radius, Me = M(Re) = M/2; the luminosity-
weighted average ellipticity, in a plane perpendicu-
lar to the line of sight, < ê⊥ >, within either an
isophote enclosing an area, Â = πR2

e, or the largest
isophote fully contained within the SAURON field,
whichever is smaller; the luminosity-weighted mean
squared velocity component, parallel to the line of
sight, < ṽ2

‖ >, within either an ellipse of area, Â, el-
lipticity, ê⊥, and related position angle, or the largest
similar ellipse fully contained within the SAURON
field, whichever is smaller; the luminosity-weighted
squared velocity dispersion, parallel to the line of
sight, < σ2

‖ >, within either an ellipse of area, Â, el-
lipticity, ê⊥, and related position angle, or the largest
similar ellipse fully contained within the SAURON
field, whichever is smaller. For further details refer
to the source papers (S IV; SX) and an earlier at-
tempt (B05).

Two additional parameters can be inferred by
fitting the data with dynamic models. More specif-
ically, the inclination angle, i, is deduced from the
best fitting two-integral Jeans model (S IV), and the
anisotropy parameter, δ, is determined from the so-
lution of the dynamical models, supposed to be ax-
isymmetric (S X). It is worth remembering that fast
rotators show evidence of large anisotropy and axial
symmetry, while slow rotators appear to be nearly
isotropic and moderately triaxial (S X).

The anisotropy parameter (e.g. B05):

δ = 1− σ2
33

σ2
11

= 1− σ2
33

σ2
22

; (7a)

σ11 = σ22 ≥ σ33 ; (7b)

may be related to the generalized anisotropy param-
eters, ζpp, via Eqs. (4d), (4e), in the special case of
equilibrium figures, as:

δ = 1− ζ33

ζ11
= 1− ζ33

ζ22

=
1− 3ζ33

1− ζ33
=

3ζ11 − 1
ζ11

=
3ζ22 − 1

ζ22
; (8)

which is restricted to homeoidally striated MacLau-
rin spheroids.

For representing sample objects in the (Oêχ2
v)

plane, intrinsic values of velocities and ellipticities
with regard to edge-on configurations have to be
used, instead of projected values along the line of
sight. The corrections for edge-on (edo) configura-
tions are (Binney and Tremaine 1987, Chap. 4, §4.3):

1− ε231 =
1− < ε⊥ >2

sin2 i
; (9)

ê = 1− ε31 = 1−
[
1− 1− < ê⊥ > (2− < ê⊥ >)

sin2 i

]1/2

(10)

for the meridional axis ratio and ellipticity, where
< ε⊥ > and < ê⊥ > are the luminosity averaged
axis ratio and ellipticity related to an inclination an-
gle, i, between the symmetry axis and the line of
sight (i = 90◦ for edge-on configurations), and:

[< ṽ2
‖ >]edo =

[< ṽ2
‖ >]obs

sin2 i
; (11)

[< σ2
‖ >]edo =

[< σ2
‖ >]obs

1− δ cos2 i
; (12)

under the assumption of axisymmetric (a1 = a2) con-
figurations with axisymmetric (σ11 = σ22) stress ten-
sor (S X).

The intrinsic squared mean rotational velocity
and squared velocity dispersion are:

(vφ)2 = 2[< ṽ2
‖ >]edo ; (13)

σ2 = σ2
11 + σ2

22 + σ2
33

= 2[< σ2
‖ >]edo + (1− δ)[< σ2

‖ >]edo

= (3− δ)[< σ2
‖ >]edo ; (14)

in terms of edge-on mean rotational velocity and ve-
locity dispersion, and:

(vφ)2 =
2

sin2 i
[< ṽ2

‖ >]obs ; (15)

σ2 =
3− δ

1− δ cos2 i
[< σ2

‖ >]obs ; (16)

in terms of observed mean rotational velocity and
velocity dispersion.

The intrinsic rotation parameter, by use of
Eqs. (14), (15), (16) and (45), reads:

(χ2
v)int =

(vφ)2

σ2
=

2
sin2 i

1− δ cos2 i

3− δ

[< ṽ2
‖ >]obs

[< σ2
‖ >]obs

;

(17)
and sample objects may be represented in the (Oêχ2

v)
plane using Eqs. (10) and (17).

The dimensionless energy:

κ =
σ2

11a1

GM
; (18)

may be considered as the extent to which gravita-
tion is balanced by centrifugal forces at the top ma-
jor axis, a1, since −FC/FG ≈ κ. In terms of the
[M10 kpc Gyr] units, M10 = 1010M¯, the constant of
gravitation is G = 4.493 104 M−1

10 kpc3 Gyr−2 and as-
suming as typical values M = 102 M10, a1 = 10 kpc,
σ2

11 = 4.493 104 kpc Gyr−1, Eq. (18) yields κ = 0.1 as
expected for elliptical galaxies. On the other hand,
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the observed quantities are related to the effective
radius, Re, instead to the major semiaxis, a1, and
the dimensionless energy has to be approximated as:

κedo =
[< σ2

‖ >]edoRe

GMe
; (19)

in connection with edge-on configurations.
For the sample of elliptical galaxies under con-

sideration (N = 16), the values of the following pa-
rameters are listed in Table 1: the effective (half-
light) radius, Re (CV08); the intrinsic mean equa-
torial tangential velocity component, vφ, Eq. (15);
the intrinsic velocity dispersion, σ, Eq. (16); the
galaxy stellar mass within the effective radius, Me =
M(Re) = M/2, under the assumption that luminos-
ity traces the mass (CV08); the dimensionless energy,
κedo, Eq. (19); the inclination angle, i, of the best fit-
ting two-integral Jeans model (S IV); the anisotropy
parameter, δ, determined from the solution of the dy-
namical models, supposed to be axisymmetric (S X);
the intrinsic ellipticity, ê, deduced from the com-
puted inclination, Eq. (10), under the assumption of

axisymmetric configurations (SX); the sample ob-
ject rotation parameter, (χ2

v)int, Eq. (17); the ad-
joint configuration rotation parameter, χ2

v, Eq. (6);
together with the kinematic classification, where F
and S denote fast and slow rotators, respectively
(SX). For the original data refer to the source pa-
pers (S IV; S X). For further details refer, in addition,
to earlier attempts (B05; CV08; C09). It can also
be seen that κedo = 0.20-0.34 for the whole sample,
which implies gravitation is not balanced by centrifu-
gal force in elliptical galaxies, as expected. A version
of Table 1 where effective radii are expressed in arc-
sec and velocities in km/s, can be seen in Appendix
A3.

It is worth noting that other inclination angles
are also permitted when dynamical modeling is used,
expecially for nearly round models. For instance,
good fits for the full kinematic profile in NGC 3379
were obtained using i = 40◦ − 50◦ (Samurovic and
Danziger 2005), and virtually unchanged anisotropy
results were found in models for NGC 3379, NGC
4486, and NGC 4552 at an inclination angle of i =
45◦ (SX). An uncertainty on the inclination angle

Table 1. Parameters calculated from the data related to a sample (N = 16) of elliptical galaxies, extracted
from larger samples of early-type galaxies investigated within the SAURON project (S IV, N = 25; S X,
N = 48). Values of dimensional quantities are expressed in [M10 kpc Gyr] units (1 kpc/Gyr=0.978 46 km/s; 1
km/s=1.022 01 kpc/Gyr), and angles in degrees. Column captions: (1) NGC number; (2) effective (half-light)
radius, Re, calculated as Re/kpc = [(Re/arcsec)(d/Mpc)]/206265; d/Mpc = exp10[(m̂ − M̂)/5 − 5](CV08),
where m̂ − M̂ is the distance modulus taken from the source paper (S IV); (3) intrinsic mean equatorial
tangential velocity component, vφ, Eq. (15); (4) intrinsic velocity dispersion, σ, Eq. (16); (5) galaxy stellar
mass within the effective radius, Me = M(Re) = M/2, under the assumption that luminosity traces the
mass (CV08); (6) dimensionless energy, κedo, Eq. (19); (7) inclination angle, i, from the best fitting two-
integral Jeans model (S IV); (8) anisotropy parameter, δ, determined from the solution of the dynamical
models, supposed to be axisymmetric (SX); (9) intrinsic ellipticity, ê, deduced from the computed inclination,
Eq. (10), under the assumption of axisymmetric configurations (SX); (10) sample object rotation parameter,
(χ2

v)int, Eq. (17); (11) adjoint configuration rotation parameter, χ2
v, Eq. (6); (12) kinematic classification,

where F and S denote fast and slow rotators, respectively (SX). For the original data refer to the source
papers (S IV; S X). For further details refer, in addition, to earlier attempts (B05; CV08; C09).

NGC Re vφ σ Me κedo i δ ê (χ2
v)int χ2

v KC
0821 4.43 069 311 10.26 0.33 90 0.20 0.40 0.05 0.35 F
2974 2.43 219 317 07.61 0.26 57 0.24 0.62 0.47 0.46 F
3377 2.01 082 198 02.35 0.27 90 0.25 0.46 0.17 0.38 F
3379 2.09 040 349 08.80 0.22 90 0.03 0.08 0.01 0.05 F
3608 4.43 012 310 09.77 0.34 90 0.13 0.18 0.00 0.12 S
4278 2.43 090 410 09.64 0.33 45 0.18 0.26 0.05 0.19 F
4374 6.15 010 492 36.35 0.31 90 0.08 0.15 0.00 0.09 S
4458 2.19 014 146 01.50 0.24 90 0.09 0.12 0.01 0.07 S
4473 2.00 062 318 07.86 0.22 73 0.34 0.46 0.04 0.38 F
4486 7.96 010 542 45.97 0.38 90 0.00 0.04 0.00 0.02 S
4552 2.32 019 453 12.62 0.28 90 0.02 0.04 0.00 0.02 S
4621 3.97 075 355 18.80 0.21 90 0.18 0.34 0.04 0.27 F
4660 0.67 122 279 02.11 0.20 70 0.30 0.53 0.19 0.40 F
5813 7.90 046 389 28.89 0.32 90 0.08 0.15 0.01 0.09 S
5845 0.56 117 390 03.02 0.22 90 0.15 0.35 0.09 0.29 F
5846 9.51 010 424 37.19 0.34 90 0.01 0.07 0.00 0.04 S
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Fig. 2. Positions of elliptical galaxies listed in Table 1, in the (Oêχ2
v) plane, denoted as squares and

diamonds for fast and slow rotators, respectively. Curves are taken from Fig. 1, related to equilibrium figures
(ζ = 1, solid line) and nonequilibrium figures (ζ = 1.1, up in the first quadrant; ζ = 0.5, down in the first
quadrant; dotted lines) with isotropic stress tensor. Vertical lines are as in Fig. 1. The adjoint configurations
with isotropic stress tensor and equal shape are also positioned on the sequence of equilibrium figures using
the same symbols, as the result of a vertical shift. A similar procedure holds, in general, for an assigned
sequence of nonequilibrium figures with isotropic stress tensor.

could imply (for nearly spherical shapes) an uncer-
tainty on the morphological type (e.g. Gregg et
al. 2004). More specifically, genuine E0-E1 galaxies
could be confused with head-on oriented S0 galax-
ies and vice versa. This is a nontrivial issue, for the
present picture of the origin and the evolution of E
galaxies is significantly different from that supposed
for S0 galaxies (e.g. Gregg 1989). With the above
mentioned caveats in mind, let the model predictions
be compared with the data from observations.

The positions of fast and slow rotators in the
(Oêχ2

v) plane, are shown in Fig. 2 by squares and di-
amonds, respectively.

Three curves are also reproduced from Fig. 1,
namely equilibrium figures (ζ = 1, solid line) and
nonequilibrium figures (ζ = 1.1, up in the first quad-
rant; ζ = 0.5, down in the first quadrant; dotted
lines) with isotropic stress tensor. The meaning of
the vertical lines is the same as in Fig. 1. The ad-
joint configurations with isotropic stress tensor and

equal shape, are also positioned on the sequence of
equilibrium figures using the same symbols, as the re-
sult of a vertical shift. A similar procedure holds, in
general, for an assigned sequence of nonequilibrium
figures with isotropic stress tensor. An inspection of
Fig. 2 shows the following features.

All sample objects lie below the lower se-
quence (ζ = 0.5), with the exception of the most
flattened galaxy (NGC 2974), which is placed just
above the middle sequence (ζ = 1).

In general, slow rotators (diamonds) are
placed on the left with respect to fast rotators
(squares), with a single exception (NGC 3379) which,
on the other hand, shows a nearly isotropic stress
tensor (δ = 0.03), a nearly spherical shape (ê =
0.04), and a velocity ratio,

{[< ṽ2
‖ >]obs/[< σ2

‖ >]obs}1/2 = 0.14 ,
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equal to the maximum value found for slow rotators
(NGC 5813). A similar trend is exhibited by adjoint
configurations with isotropic stress tensor, which are
vertically shifted on the sequence of equilibrium fig-
ures, solid line in Fig. 2.

If the slow rotators (including NGC 3379) are
assumed to be nonrotating (vφ = 0) within the ob-
servational errors and elongated (ê < 0) due to an
anisotropic stress tensor (σ11 = σ22 < σ33 or δ <
0), the related adjoint configurations with isotropic
stress tensor are elongated due to imaginary rotation,
according to Eq. (6). More specifically, the major
axis coincides with the polar axis, and the meridional
axis ratio exceeds unity, yielding a negative ellipti-
city, ê = 1 − ε31 < 0, which, in turn, produces a
negative anisotropy parameter, δ = 1− σ2

33/σ2
11 < 0,

by generalizing Eq. (7a) to the case under discussion,
σ11 = σ22 < σ33.

In this view, let êfla, δfla, be the intrinsic ellip-
ticity from Eq. (10) and the anisotropy parameter de-
termined by comparison with the dynamical models,
for axisymmetric flattened configurations (S X), and
êelo, δelo, their counterparts related to equal values of
intrinsic axes and stress tensor components, but with
the major axis related to the symmetry axis instead
of the equatorial plane. Accordingly, the following

changes must be performed: ε31 → ε−1
31 ; σ33 → σ11;

σ11 → σ33; and this, using Eqs. (7) and (10), yields:

êelo = 1− ε−1
31 = 1− (1− êfla)−1 =

−êfla

1− êfla
; (20)

δelo = 1−
(

σ33

σ11

)−2

= 1− (1− δfla)−1 =
−δfla

1− δfla
;

(21)

where the values related to flattened configurations
are listed in Table 1 and again in Table 2 for slow
rotators (NGC 3379 included), together with their
counterparts related to elongated configurations and,
in both cases, the values of the rotation parameter,
χv, for adjoint configuration with isotropic stress ten-
sor.

The square root of the rotation parameter was
listed to better appreciate the difference between
flattened and elongated configurations.

The positions of slow rotators (NGC 3379 in-
cluded) in the (Oêχ2

v) plane in the case under dis-
cussion are indicated in Fig. 3 as diamonds and a
single square, while nothing changes for the remain-
ing fast rotators (squares) and captions, with respect
to Fig. 2.

Fig. 3. Same as Fig. 2, but under the assumption that slow rotators (NGC 3379 included) are nonrotating
within the observational errors and elongated due to an anisotropic stress tensor. For further details refer
to the text.
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Table 2. The intrinsic ellipticity, ê, the anisotropy parameter, δ, and the square root of the absolute value
of the rotation parameter, |χ2

v|1/2, for slow rotators (NGC 3379 included) supposed to be flattened (fla) as
in Table 1, or elongated (elo) with equal major axis, according to Eqs. (20) and (21). The square root of the
absolute value of the rotation parameter is also listed for a better demonstration of the difference between
flattened and elongated configurations.

NGC êfla δfla |(χ2
v)fla|1/2 −êelo −δelo |(χ2

v)elo|1/2

3379 0.08 0.03 0.22 0.09 0.03 0.21
3608 0.18 0.13 0.34 0.22 0.15 0.31
4374 0.15 0.08 0.31 0.18 0.09 0.28
4458 0.12 0.09 0.27 0.14 0.10 0.25
4486 0.04 0.00 0.15 0.04 0.00 0.15
4552 0.04 0.02 0.15 0.04 0.02 0.15
5813 0.15 0.08 0.31 0.18 0.09 0.28
5846 0.07 0.01 0.20 0.08 0.01 0.19

4. COMPARISON WITH
EARLIER ATTEMPTS

For equilibrium figures (ζ = 1) viewed edge-on
(i = 90◦), the combination of Eqs. (3), (5), (8), and
(17) yields:

(χ2
v)C =

[< ṽ2
‖ >]edo

[< σ2
‖ >]edo

= (1− δ)
(Bsel)11
(Bsel)33

− 1 ; (22)

which is formally coincident with classical results,
where < ṽ2

‖ > and < σ2
‖ > are a mass-averaged,

one-dimension squared rotation velocity and related
variance, respectively (e.g. B05).

If, on the other hand, < ṽ2
‖ > and < σ2

‖ > are
considered as sky-averages, according to the current
notation, and the kinetic energy is decomposed into
contributions from ordered and random motions, the
right-hand side of Eq. (22) has to be divided by a cor-
rection factor. The result is (B05):

(χ2
v)B =

[< ṽ2
‖ >]edo

[< σ2
‖ >]edo

=
(1− δ)(Bsel)11/(Bsel)33 − 1

ψ(1− δ)(Bsel)11/(Bsel)33 + 1
; (23)

where ψ is an integral which depends on the density
profile and the rotation curve of the matter distribu-
tion.

In the present investigation, Eq. (22) holds
provided the kinetic energy is decomposed into con-
tributions from cylindrical rotation and residual mo-
tions, which implies a different anisotropy parame-
ter with respect to Eq. (23). The left-hand sides of
Eqs. (22) and (23):

(χ2
v)edo =

[< ṽ2
‖ >]edo

[< σ2
‖ >]edo

; (24)

must necessarily coincide, if deduced from obser-
vations, which is true also for the shape factors.

Accordingly, the combination of Eqs. (22) and (23)
yields:

(1− δC)
(Bsel)11
(Bsel)33

− 1

=
(1− δB)(Bsel)11/(Bsel)33 − 1

ψ(1− δB)(Bsel)11/(Bsel)33 + 1
; (25)

where the indices, C and B, denote anisotropy pa-
rameters related to the current and earlier (B05) at-
tempt, respectively.

The values of the anisotropy parameter for
sample objects, listed in Table 1, are taken from an
earlier analysis (S X), where they have been deter-
mined in accordance with Eq. (23). For this reason, a
comparison is needed between values of the rotation
parameter, (χ2

v)C and (χ2
v)B , defined by Eqs. (22)

and (23), respectively. To this aim, the rotation pa-
rameter ratio:

χ2
CB =

(χ2
v)C

(χ2
v)B

= ψ(1−δB)
(Bsel)11
(Bsel)33

+1; 0 < ε31 < 1;

(26)
shall be considered, which is maximum for isotropic
stress tensor, δ = 0. In the spherical limit, ε31 = 1,
(Bsel)11 = (Bsel)33, which implies δ = 0, and Eq. (26)
reduces to:

χ2
CB = ψ + 1 ; ε31 = 1 ; (27)

in the flat limit, ε31 = 0, (Bsel)11 = π/2, (Bsel)33 = 0,
which implies χ2

CB → +∞ unless δ = 1. In dealing
with elliptical galaxies, ε31 ≥ 0.3, the flat limit is
never attained. For realistic density profiles, numer-
ical computations yield ψ ≈ 0.131 in presence of flat
rotation curves, vφ = const (B05), and ψ ≈ 0.15
using Jeans models (SX).

The results are listed in Table 3, where the
values of the following parameters are calculated or
deduced from Table 1 for sample objects: the intrin-
sic meridional axis ratio, ε31 = 1− ê, Eq. (10); the
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Table 3. Comparison between intrinsic rotation parameters, (χ2
v)C and (χ2

v)B , calculated for sample ob-
jects listed in Table 1, using Eqs. (22) and (23), respectively, for isotropic stress tensor (δ = 0) and ψ = 0.15
(S X). Also listed are values of the ratios, χ2

CB = (χ2
v)C/(χ2

v)B and p = 1/(
√

2χCB). The remaining
parameters are taken or deduced from Table 1. For meridional axis ratios below the bifurcation point,
ε31 < (ε31)bif = 0.582 724, the shape factors are determined for triaxial instead of axisymmetric configura-
tions, where the minor equatorial axis is assumed to be parallel to the line of sight. Column captions: (1) NGC
number; (2) intrinsic meridional axis ratio, ε31 = 1−ê, Eq. (10); (3) shape factor ratio, b23 = (Bsel)22/(Bsel)33,
Eq. (3b); (4) inclination angle, i, from the best fitting two-integral Jeans model (S IV); (5) anisotropy pa-
rameter, δ, determined from the solution of the dynamical models, supposed to be axisymmetric (S X); (6)
sample object rotation parameter, (χ2

v)edo = [< ṽ2
‖ >]edo/[< σ2

‖ >]edo, Eqs. (11) and (12); (7) adjoint config-
uration rotation parameter, (χ2

v)C , Eq. (22); (8) adjoint configuration rotation parameter, (χ2
v)B , Eq. (23);

(9) rotation parameter ratio, χ2
CB , Eq. (26); (10) ratio, p = 1/(

√
2χCB); (11) kinematic classification, where

F and S denote fast and slow rotators, respectively (S X).

NGC ε31 b23 i δ (χ2
v)edo (χ2

v)C (χ2
v)B χ2

CB p KC
0821 0.60 1.53 90 0.20 0.07 0.35 0.29 1.23 0.64 F
2974 0.38 2.29 57 0.24 0.65 0.46 0.38 1.19 0.65 F
3377 0.54 1.68 90 0.25 0.24 0.38 0.31 1.22 0.64 F
3379 0.92 1.07 90 0.03 0.02 0.05 0.04 1.16 0.66 F
3608 0.82 1.18 90 0.13 0.00 0.12 0.10 1.18 0.65 S
4278 0.74 1.28 45 0.18 0.07 0.19 0.16 1.19 0.65 F
4374 0.85 1.14 90 0.08 0.00 0.09 0.08 1.17 0.65 S
4458 0.88 1.11 90 0.09 0.01 0.07 0.06 1.17 0.65 S
4473 0.54 1.68 73 0.34 0.05 0.38 0.31 1.22 0.64 F
4486 0.96 1.03 90 0.00 0.00 0.02 0.02 1.15 0.66 S
4552 0.96 1.03 90 0.02 0.00 0.02 0.02 1.15 0.66 S
4621 0.66 1.41 90 0.18 0.06 0.27 0.23 1.21 0.64 F
4660 0.47 1.89 70 0.30 0.26 0.40 0.33 1.21 0.64 F
5813 0.85 1.14 90 0.08 0.02 0.09 0.08 1.17 0.65 S
5845 0.65 1.43 90 0.15 0.13 0.29 0.24 1.21 0.64 F
5846 0.93 1.06 90 0.01 0.00 0.04 0.03 1.16 0.66 S

shape factor ratio, b23 = (Bsel)22/(Bsel)33, Eq. (3b);
the inclination angle, i, from the best fitting two-
integral Jeans model (S IV); the anisotropy parame-
ter, δ, determined from the solution of the dynamical
models, supposed to be axisymmetric (S X); the sam-
ple object rotation parameter, (χ2

v)edo = [< ṽ2
‖ >

]edo/[< σ2
‖ >]edo, Eqs. (11) and (12); the adjoint

configuration rotation parameter, (χ2
v)C , Eq. (22);

the adjoint configuration rotation parameter, (χ2
v)B ,

Eq. (23); the rotation parameter ratio, χ2
CB , Eq. (26);

the ratio, p = 1/(
√

2χCB); together with the kine-
matic classification, where F and S denote fast and
slow rotators, respectively (S X). For sample ob-
jects with meridional axis ratio below the bifurcation
point, ε31 < (ε31)bif = 0.582 724, the shape factors
are determined for triaxial instead of axisymmetric
configurations, where the minor equatorial axis is as-
sumed to be parallel to the line of sight.

An inspection of Table 3 shows that χ2
CB =

1.15-1.23 and 1/(
√

2χCB) = 0.64-0.66. Curiously,
the last range is consistent with the squared coeffi-
cient, 2 × 0.572, of the best fitting relation between
rotation parameters derived from integral-field and

long-slit stellar kinematics (SX), the latter expressed
in terms of one-dimensional peak velocity.

5. DISCUSSION

Though the generalization of the ellipticity-
rotation plane, (Oêχ2

v), takes nonequilibrium figures
into consideration, still galaxies may be thought of
as fully virialized (ζ = 1) unless a major merger is
going on. On the other hand, clusters of galaxies are
presently assembling and radial motions dominate at
large clustercentric distances, which implies dynam-
ical evolution (ζ 6= 1). For this reason, only the
sequence of equilibrium figures has been considered
in dealing with elliptical galaxies. The rotation pa-
rameter, χ2

v, depends on the intrinsic squared mean
equatorial tangential velocity component and veloc-
ity component dispersions, according to Eq. (5).

A different rotation parameter has been de-
fined in an earlier attempt (B05), which depends on
the sky-averaged mean streaming velocity parallel to
the line of sight, the sky-averaged streaming velocity
(parallel to the line of sight) dispersion, and the sky-
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averaged component velocity (parallel to the line of
sight) dispersion related to nonstreaming motions.

The inclination angle, i, and the anisotropy
parameter, δ, have been determined for sample ob-
jects by comparison with the dynamical models, un-
der the assumption of axisymmetric configurations
(a1 = a2), axisymmetric stress tensor (σ11 = σ22),
and flattened shapes (a1 > a3, σ11 > σ33), as out-
lined in the source paper (S X). On the other hand,
it is shown in Fig. 2 that four sample objects are
predicted to be triaxial as the ellipticity value re-
lated to the bifurcation point (êbif = 0.417 276),
marked by the vertical dotted line, is exceeded, and
the most flattened configurations could be barlike
(e.g. ε21 = 0.432 232 for ε31 = 0.345 069). Then
some caution must be adopted in the interpretation
of the triaxiality, expecially for the most aspherical
sample object (NGC 2974). To this respect, it is
worth remembering that galaxies are embedded in
dark (nonbaryonic) matter haloes, according to cur-
rent cosmological views.

The presence of a massive, embedding subsys-
tem stabilizes the inner spheroid and shifts the bi-
furcation point (from axisymmetric to triaxial con-
figurations) towards increasing ellipticities (Durisen
1978, Pacheco et al. 1986). In the special case of ho-
mogeneous subsystems, the bifurcation point is at-
tained at ê ≈ 0.7 for comparable masses within the
volume of the inner spheroid (Caimmi 1996a), which
can be considered as an upper limit. In fact, by
comparison with the dynamical models, fast rota-
tors appear to be axisymmetric while, paradoxically,
slow rotators exhibit a moderate triaxiality (S X).
Using triaxial dynamic models could provide bet-
ter understanding on this point. An inspection of
Fig. 2 and Table 1 shows that, for slow rotators (in-
cluding NGC 3379) 0 ≤ ê < 0.2; 0 ≤ δ < 0.15;
0 ≤ χ2

v < 0.15; and for fast rotators (excluding
NGC 3379) 0.2 ≤ ê < 0.65; 0.15 ≤ δ < 0.35;
0.15 ≤ χ2

v < 0.5; which could be an alternative kine-
matic classification with respect to earlier attempts
(e.g. Emsellem et al. 2007). Richer samples should
be dealt with to provide more conclusive evidence on
this point.

If slow rotators (including NGC 3379) are non-
rotating within the observational errors, and their
shapes are elongated due to negative anisotropy pa-
rameters, δ < 0 i.e. σ11 = σ22 < σ33, a different kine-
matic classification is shown in Fig. 3 and Table 2.
With regard to adjoint configurations with isotropic
stress tensor, fast and slow rotators are affected by
real and imaginary systematic rotation, respectively.
It is, of course, a limiting situation, in the sense that
no zone of avoidance is expected on the sequence of
adjoint configurations. If nonrotating elongated con-
figurations really do exist, the slow rotators should
be divided into two subclasses, namely (1) flattened
in real rotation, and (2) elongated in imaginary rota-
tion. In the latter case, elongated instead of flattened
dynamic models should be used for determining the
inclination angle and the anisotropy parameter by
comparison with the data (S IV; SX), to gain consis-
tency and to test the above interpretation.

Given a spherical galaxy with isotropic stress
tensor, rotation (around a selected axis) kinetic en-
ergy may be added in infinite number of ways be-
tween two limiting situations, namely (a) systematic
rotation, where circular motions are either clockwise
or counterclockwise, and (b) random rotation, where
the mean circular velocity is null. In any case, all
the observables remain unchanged with the excep-
tion of the angular momentum and the stress ten-
sor. More specifically, any system may be related to
its adjoint configuration with isotropic stress tensor,
without loss of generality, for ellipticity values above
a threshold (Appendix A2).

In this view, the elliptical side of the Hub-
ble sequence may be interpreted as a sequence of
equilibrium (adjoint) figures where the ellipticity, ê,
increases with the rotation parameter, χ2

v. The orig-
inal (elliptical side of the) Hubble sequence may be
generalized in two respects, namely (1) from equi-
librium (ζ = 1) to nonequilibrium (ζ 6= 1) figures,
and (2) from real (ê ≥ 0, χ2

v ≥ 0) to imaginary
(ê < 0, χ2

v < 0) rotation. More specifically, real rota-
tion is related to flattened configurations and imag-
inary rotation to elongated configurations, spinning
around the minor and the major axis, respectively.

The above classification is based on the as-
sumption of homeoidally striated density profiles, re-
gardless of the mechanism of formation. More specif-
ically, configurations of equal shape related to differ-
ent assembling processes belong to the same class. In
reality, isophotes in elliptical galaxies may be boxy
i.e. ”overelliptic” or disky i.e. ”underelliptic” where,
in any case, the axis ratio changes with radius. This
dichotomy, together with the one related to dwarf
and giant elliptical galaxies, is interpreted as due
to different past histories (e.g. Kormendy et al.
2009). On the other hand, a simplified description
in terms of isophotes with constant axis ratio at all
radii, implies a classification of equilibrium figures
(or nonequilibrium ones with fixed virial index), fig-
ures which is independent of the formation and evo-
lution processes.

6. CONCLUSION

The results of earlier investigations on
homeoidally striated MacLaurin spheroids and Ja-
cobi ellipsoids (CM05, Caimmi 2006a, C07) are used
in the current attempt to represent the nonequilib-
rium figures in the ellipticity-velocity plane, and the
figures in imaginary rotation, with the effect is elon-
gating instead of flattening, with respect to the ro-
tation axis. The key concept is that the addition
of kinetic energy related to tangential equatorial ve-
locity components creates distorted boundaries re-
gardless of what fraction translates in an increment
of angular momentum, and what in an increment of
stress tensor equatorial components. Then any sys-
tem admits an adjoint configuration with isotropic
stress tensor, for ellipticity values above a thresh-
old (Appendix A2), and the related sequence can be
considered without loss of generality. The kinetic
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energy is decomposed into contributions from cylin-
drical rotation, Erot = M(vφ)2/2, and tangential
equatorial component velocity dispersion plus resid-
ual motions, Eres = M(σ2

φφ + σ2
ww + σ2

33)/2, and the
rotation parameter is defined as χ2

v = Erot/Eres.
Elliptical galaxies are idealized as homeoidally

striated MacLaurin spheroids and Jacobi ellipsoids,
and their position on the ellipticity-velocity plane
is inferred from observations related to a sample
(CV08, N = 16) extracted from larger samples of
early-type galaxies investigated within the SAURON
project (S IV, N = 25; S X, N = 48). The loca-
tion of model galaxies in the (Oêχ2

v) plane is deter-
mined through the following steps (C09): (i) select
SAURON data of interest; (ii) calculate the param-
eters appearing in the virial equations; (iii) make a
correspondence between model galaxies and sample
objects; (iv) represent model galaxies in the (Oêχ2

v)
plane.

The main results found in the present investi-
gation may be summarized as follows.

(1) Sequences of homeoidally striated
MacLaurin spheroids and Jacobi ellipsoids
with isotropic stress tensor are defined and
plotted in the (Oêχ2

v) plane, without loss of
generality: for any system with anisotropic
stress tensor an adjoint configuration exists,
with isotropic stress tensor and remaining
parameters unchanged with the exception of
the angular momentum, for ellipticity values
above a threshold.
(2) Sequences of homeoidally striated
MacLaurin spheroids and Jacobi ellipsoids
are generalized to nonequilibrium figures.
(3) Sequences of homeoidally striated
MacLaurin spheroids and Jacobi ellipsoids
are generalized to imaginary rotation which
results in elongating, instead of flattening,
with respect to the rotation axis.
(4) An alternative kinematic classification
with respect to earlier attempts (e.g. Em-
sellem et al. 2007) is proposed, where slow
rotators are characterized by low ellipticities
(0 ≤ ê < 0.2), low anisotropy parameters
(0 ≤ δ < 0.15), and low rotation parameters
(0 ≤ χ2

v < 0.15), and fast rotators by large
ellipticities (0.2 ≤ ê < 0.65), large anisotropy
parameters (0.15 ≤ δ < 0.35), and large ro-
tation parameters (0.15 ≤ χ2

v < 0.5). In
this content, NGC 3379 is considered as a
slow rather than fast rotator, with respect to
the earlier classification listed in Table (S X).
Richer samples should be used to test the va-
lidity of the above interpretation.
(5) A possible interpretation of slow rotators
as nonrotating and elongated due to a nega-
tive anisotropy parameter, instead of flattened
due to a positive anisotropy parameter, is ex-
ploited.
(6) The elliptical side of the Hubble morpho-
logical sequence is interpreted as a sequence of
equilibrium (adjoint) figures where the ellip-

ticity is an increasing function of the rotation
parameter. Accordingly, slow rotators corre-
spond to early classes (E0-E2 in the oblate
limit, and E2-E0 in the prolate limit), and
fast rotators to late classes (E3-E6). In this
respect, boundaries are rotationally distorted
regardless of what fraction of tangential equa-
torial velocity components is related to an-
gular momentum, and what to stress tensor
equatorial components.

Acknowledgements – Thanks are due to an anony-
mous referee for critical comments which improved
an earlier version of the manuscript.
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APPENDIX

A1 Rotation and residual kinetic energy

With regard to a generic matter distribution,
let (Ox1x2x3) be a reference frame where the origin
coincides with the centre of mass, and the coordi-
nate axis x3 coincides with the rotation axis. Let
vφ(x1, x2, x3, t) be the tangential equatorial (with re-
spect to the rotation axis) velocity component, re-
lated to the generic particle at the point P(x1, x2, x3)
at the time, t. The corresponding angular velocity is
defined by the relation:

vφ(x1, x2, x3, t) = Ω(x1, x2, x3, t)w ; w2 = x2
1+x2

2 ;
(28)

which can also be extended to mean values,
vφ(x1, x2, x3, t), Ω(x1, x2, x3, t), whithin an infinites-
imal volume element dx1 dx2 dx3 placed at the same
point P. In the following relations, the time depen-
dence shall be omitted for the quantities at the left-
hand side, for the sake of simplicity.

The mass-weighted tangential equatorial ve-
locity component and squared tangential equatorial
velocity component read:

vφ =
1
M

∫ ∫ ∫
vφ(x1, x2, x3, t)ρ(x1, x2, x3, t)

× dx1 dx2 dx3 ; (29)

(v2
φ) =

1
M

∫ ∫ ∫
v2

φ(x1, x2, x3, t)ρ(x1, x2, x3, t)

× dx1 dx2 dx3 ; (30)

where M is the total mass and ρ the local density.
The empirical variance is:

σ2
φφ = (v2

φ)− (vφ)2 ; (31)

by definition.
The moment-of-inertia-weighted angular ve-

locity and squared angular velocity read:

Ω =
1
I3

∫ ∫ ∫
Ω(x1, x2, x3, t)w2ρ(x1, x2, x3, t)

× dx1 dx2 dx3 ; (32)

(Ω2) =
1
I3

∫ ∫ ∫
Ω2(x1, x2, x3, t)w2ρ(x1, x2, x3, t)

× dx1 dx2 dx3 ; (33)

where I3 is the moment of inertia with respect to the
rotation axis, x3. The empirical variance is:

σ2
ΩΩ = (Ω2)− (Ω)2 ; (34)

by definition.
A link between mass and moment of inertia is

provided by the following relation:

R2
G3 =

I3

M
=

1
M

∫ ∫ ∫
w2ρ(x1, x2, x3, t)

× dx1 dx2 dx3 ; (35)

where RG3 is the radius of gyration with respect to
the rotation axis x3. Using Eqs. (28) and (35), the
combination of Eqs. (30), (31), (33), and (34) yields:

(v2
φ) = (Ω2)R2

G3 ; (36)

(vφ)2 + σ2
φφ = [(Ω)2 + σ2

ΩΩ]R2
G3 ; (37)

while, on the other hand, vφ 6= ΩRG3, σφφ 6=
σΩΩRG3, and a different averaging is needed on ei-
ther vφ or Ω.

To this aim, the (MRG3)-weighted circular ve-
locity, vΩ, and the (MRG3)-weighted angular veloc-
ity, Ωv, are defined as:
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vΩ = ΩRG3 =
RG3

I3

∫ ∫ ∫
vφ(x1, x2, x3, t)w

× ρ(x1, x2, x3, t) dx1 dx2 dx3; (38)

Ωv =
vφ

RG3
=

RG3

I3

∫ ∫ ∫
Ω(x1, x2, x3, t)w

× ρ(x1, x2, x3, t) dx1 dx2 dx3; (39)

and the angular momentum with respect to the rota-
tion axis, x3, is defined by the integral on the right-
hand side of Eq. (32) or (38), which yields:

J3 = I3Ω = MvΩRG3 ; (40)

in terms of the moment-of-inertia-weighted angular
velocity and the (MRG3)-weighted circular velocity,
respectively.

The combination of Eqs. (35), (36), (38), and
(39) yields the following expression for the radius of
gyration:

R2
G3 =

I3

M
=

(v2
φ)

(Ω2)
=

(vΩ)2

(Ω)2
=

(vφ)2

(Ωv)2
; (41)

where the differences, (v2
φ) − (vΩ)2, (Ω2) − (Ωv)2,

cannot be related to empirical variances as the cor-
responding terms are weighted in different ways.

Accordingly, the rotation kinetic energy re-
lated to tangential equatorial velocity components
may be expressed as:

(Ekin)φφ =
1
2
M

[
(vφ)2 + σ2

φφ

]
= Erot +

1
2
Mσ2

φφ ;

(42a)

Erot =
1
2
M(vφ)2 ; (42b)

and the total kinetic energy reads:

Ekin = Erot + Eres ; (43a)

Eres =
1
2
M

[
(v2

w) + (v2
3) + σ2

φφ

]
; (43b)

(v2
w) = (vw)2 + σ2

ww = σ2
ww ; (43c)

(v2
3) = (v3)2 + σ2

33 = σ2
33 ; (43d)

where vw and v3 are the radial equatorial and polar
velocity components, and vw = v3 = 0 provided that
the centre of mass coincides with the origin of the
coordinates (for further details refer e.g., to C07).
Accordingly, Eq. (43b) reduces to:

Eres =
1
2
Mσ2 =

1
2
M

(
σ2

φφ + σ2
ww + σ2

33

)
; (44)

which is equivalent to:

Eres =
1
2
Mσ2 =

1
2
M

(
σ2

11 + σ2
22 + σ2

33

)
; (45)

in Cartesian coordinates.

A2 Systematic and random rotation excess

Let two matter distributions be characterized
by equal density profiles and shapes, but by isotropic
and anisotropic stress tensor, respectively, and by
different amount of angular momentum. The gener-
alized virial equations, Eqs. (1), read:

2[(Erot)pp]ani + 2[(Ẽres)pp]ani + (Epot)pp = 0 ;
p = 1, 2, 3 ; (46a)

2[(Erot)pp]iso + 2[(Ẽres)pp]iso + (Epot)pp = 0 ;
p = 1, 2, 3 ;(46b)

(Erot)11 + (Erot)22 = Erot ; (Erot)33 = 0 ; (46c)

where (Ẽres)pp = ζppEres is the residual kinetic-
energy tensor of the related equilibrium figure.

In both cases the potential-energy tensor re-
mains unchanged, which implies the following rela-
tion:

[(Ẽres)33]ani = [(Ẽres)pp]iso ; p = 1, 2, 3 ; (47)

and the substitution of Eq. (47) into (46) yields:

[(Erot)qq]iso + ∆(Erot)qq + [(Ẽres)qq]iso + ∆(Ẽres)qq

= [(Erot)qq]iso + [(Ẽres)qq]iso ; q = 1, 2 ; (48a)
∆(Erot)qq = [(Erot)qq]ani − [(Erot)qq]iso ; (48b)

∆(Ẽres)qq = [(Ẽres)qq]ani − [(Ẽres)qq]iso ; (48c)

which is equivalent to:

∆(Erot)qq + ∆(Ẽres)qq = 0 ; (49)

where the first and the second term of the sum may
be considered as a (positive or negative) systematic
and random rotation excess, respectively. Random
rotation has to be understood as related to a selected
axis, with a null mean value.

With regard to nonequilibrium figures, the va-
lidity of the relation:

∆(Erot)qq + ∆(Eres)qq = 0 ; (50)

means that a fixed amount of rotation energy has
been converted into residual energy (or vice versa).
The combination of Eqs. (49) and (50) yields:

∆(Eres)qq = ∆(Ẽres)qq ; (51)

and Eq. (50) may be cast under the explicit form:

∆[(vφ)qq]2 + ∆(σ2
qq) = 0 ; (52)
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according to Eqs. (42) and (43). The above results
may be reduced to a single statement.

Theorem: Given a matter distribution with
specified density profile, shape, virial index,
ζ = Ẽres/Eres, and isotropic stress ten-
sor, an infinity of adjoint configurations with
anisotropic stress tensor exist, for which the
sum of systematic and random rotation excess
is null.
According to earlier analyses (Lynden-Bell

1960, 1962, Meza 2002) the distribution function is
independent of the sign of tangential velocity compo-
nents, and the whole set of possible configurations is
characterized by an equal amount of both kinetic and
potential energy. In other words, clockwise and coun-
terclockwise circular motions are indistinguishable
in this respect, passing from systematic (maximal
squared mean tangential equatorial velocity compo-
nent) to random (minimal squared mean tangen-
tial equatorial velocity component) rotation. An
anisotropic stress tensor could be due to the preva-
lence of either systematic rotation (σ11 = σ22 < σ33)
or random rotation (σ11 = σ22 > σ33) with respect to
the adjoint configuration with isotropic stress tensor.

In the limiting case of flat configurations,

ε31 → 0, (Epot)33 → 0 (e.g. Caimmi 2009a), Eq. (1b)
implies (Eres)33 = ζ33Eres → 0 and (Eres)qq → 0 for
isotropic stress tensor. In other words, flat configu-
rations with isotropic stress tensor must necessarily
be self-gravitating. Rotation curves depend on den-
sity profiles, ranging from linear curves related to
homogeneous systems to Keplerian curves related to
Roche systems. Accordingly, σφφ = 0 in the for-
mer case, growing up to a maximum, σφφ > 0, in
the latter. But σφφ > 0 would imply (Eres)qq > 0,
which is in contradiction with either sufficiently flat-
tened configurations or isotropic stress tensors. Then
a threshold in meridional axis ratio exists, ε31 = ε∗31,
below which configurations with isotropic stress ten-
sor cannot exist for an assigned density profile.

A3 Table 1 in standard units

Some people might prefer a version of Table 1
with effective radii expressed in arcsec and velocities
in km/s, as listed below. The mass unit is left equal
to 1010M¯.

Table 4. Parameters calculated from the data related to a sample (N = 16) of elliptical galaxies, extracted
from larger samples of early-type galaxies investigated within the SAURON project (S IV, N = 25; S X,
N = 48). Column captions: (1) NGC number; (2) effective (half-light) radius, Re/arcsec (S IV, S X); (3)
intrinsic mean equatorial tangential velocity component, vφ/(km/s), Eq. (15); (4) intrinsic velocity dispersion,
σ/(km/s), Eq. (16); (5) galaxy stellar mass within the effective radius, Me/1010M¯ = M(Re)/1010M¯ =
(M/1010M¯)/2, under the assumption that luminosity traces the mass (CV08); (6) dimensionless energy,
κedo, Eq. (19); (7) inclination angle, i, from the best fitting two-integral Jeans model (S IV); (8) anisotropy
parameter, δ, determined from the solution of the dynamical models, supposed to be axisymmetric (S X); (9)
intrinsic ellipticity, ê, deduced from the computed inclination, Eq. (10), under the assumption of axisymmetric
configurations (SX); (10) sample object rotation parameter, (χ2

v)int, Eq. (17); (11) adjoint configuration
rotation parameter, χ2

v, Eq. (6); (12) kinematic classification, where F and S denote fast and slow rotators,
respectively (S X). For the original data refer to the source papers (S IV; S X). For further details refer, in
addition, to earlier attempts (B05; CV08; C09).

NGC Re vφ σ Me κedo i δ ê (χ2
v)int χ2

v KC
0821 039.0 068 305 10.26 0.33 90 0.20 0.40 0.05 0.35 F
2974 024.0 214 310 07.61 0.26 57 0.24 0.62 0.47 0.46 F
3377 038.0 081 194 02.35 0.27 90 0.25 0.46 0.17 0.38 F
3379 042.0 040 341 08.80 0.22 90 0.03 0.08 0.01 0.05 F
3608 041.0 011 303 09.77 0.34 90 0.13 0.18 0.00 0.12 S
4278 032.0 088 401 09.64 0.33 45 0.18 0.26 0.05 0.19 F
4374 071.0 010 482 36.35 0.31 90 0.08 0.15 0.00 0.09 S
4458 027.0 014 143 01.50 0.24 90 0.09 0.12 0.01 0.07 S
4473 027.0 061 311 07.86 0.22 73 0.34 0.46 0.04 0.38 F
4486 105.0 010 530 45.97 0.38 90 0.00 0.04 0.00 0.02 S
4552 032.0 018 444 12.62 0.28 90 0.02 0.04 0.00 0.02 S
4621 046.0 074 348 18.80 0.21 90 0.18 0.34 0.04 0.27 F
4660 011.0 119 273 02.11 0.20 70 0.30 0.53 0.19 0.40 F
5813 052.0 045 381 28.89 0.32 90 0.08 0.15 0.01 0.09 S
5845 004.6 115 382 03.02 0.22 90 0.15 0.35 0.09 0.29 F
5846 081.0 010 415 37.19 0.34 90 0.01 0.07 0.00 0.04 S
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ELIPTIQNE GALAKSIJE: IPAK IZOBLIQENE USLED ROTACIJE
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Na osnovu ranijih istra�ivaǌa
homeoidalno izbrazdanih Meklorenovih i
Jakobijevih elipsoida (Caimmi and Marmo
2005, Caimmi 2006a, 2007) definisani su ra-
zliqiti nizovi konfiguracija koji su pred-
stavǉeni u ravni elipticitet-rotacija,
(Oêχ2

v). Rotacioni parametar, χ2
v, defini-

san je kao odnos Erot/Eres, kinetiqke ener-
gije vezane za sredǌu tangencijalnu kom-
ponentu ekvatorijalne brzine, M(vφ)2/2, u
odnosu na kinetiqku energiju vezanu za tan-
gencijalnu ekvatorijalnu komponentu disper-
zije brzine, Mσ2

φφ/2, i rezidualnih kretaǌa,
M(σ2

ww + σ2
33)/2. Bez gubitka opxtosti raz-

matraǌa (iznad praga vrednosti eliptici-
teta) analiza je ograniqena na sisteme sa
izotropnim tenzorom napona koji mo�e da se
shvati kao adjungovana konfiguracija bilo
kog pridru�enog homeoidalno izbrazdanog
profila gustine sa anizotropnim tenzorom
napona, razliqitog ugaonog momenta i istim
ostalim parametrima. Opis konfiguracije u
(Oêχ2

v)-ravni je proxiren u dva aspekta, (a) iz
staǌa ravnote�e ka staǌu neravnote�e, gde
virijalne jednaqine va�e sa dodatnom kine-
tiqkom energijom i (b) od realne ka imagi-
narnoj rotaciji, gde prouzrokovani efekat
izdu�uje umesto da spǉoxtava u odnosu na
rotacionu osu.

Pristup je primeǌen na poduzorak od
(N = 16) galaksija koje su izdvojene iz ve�eg
uzorka (N = 25, N = 48) galaksija ranog tipa
prouqavanih u okviru projekta SAURON (Cap-
pellari et al. 2006, 2007). Izabrani objekti
su idealizovani kao homeoidalno izbrazdani
Meklorenovi i Jakobijevi elipsoidi i ǌi-

hovi polo�aji u (Oêχ2
v)-ravni su dobijeni

iz posmatraǌa koriste�i proceduru datu u
ranijem radu (Caimmi 2009b). Polo�aji ad-
jungovanih konfiguracija sa izotropnim ten-
zorom napona su tako�e odre�eni. Sa jed-
nim izuzetkom (galaksija NGC 3379), spori ro-
tatori se odlikuju malim vrednostima elip-
ticiteta (0 ≤ ê < 0.2), malim vrednostima
parametara anizotropije (0 ≤ δ < 0.15) i
malim vrednostima rotacionih parametara
(0 ≤ χ2

v < 0.15), dok brzi rotatori imaju ve-
like elipticitete (0.2 ≤ ê < 0.65), visoke
vrednosti parametara anizotropije (0.15 ≤
δ < 0.35) i visoke vrednosti rotacionih
parametara (0.15 ≤ χv2 < 0.5). Alterna-
tivna kinematiqka klasifikacija u odnosu
na ranije pokuxaje (Emsellem et al. 2007) za-
hteva ve�e uzorke kako bi se dodatno obezbe-
dila podrxka za gore navedene rezultate.
Korix�ena je mogu�a interpretacija sporih
rotatora kao potpuno nerotiraju�ih i iz-
du�enih zbog negativnih parametara ani-
zotropije. Konaqno, eliptiqni niz galak-
sija na Hablovom morfoloxkom nizu je inter-
pretiran kao niz ravnote�nih (adjungovanih)
konfiguracija gde je elipticitet rastu�a
funkcija rotacionog parametra i gde spori
rotatori odgovaraju ranim klasama (E0-E2 u
spǉoxtenom limitu i E2-E0 u izdu�enom li-
mitu). Na ovaj naqin, granice su rotaciono
izobliqene bez obzira na ugaoni moment i ten-
zor napona i smatra se da je rotacija nastala
zbog dodatne kinetiqke energije tangencijanih
komponenti ekvatorijalne brzine u odnosu na
sferne konfiguracije sa izotropnim tenzorom
napona.
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