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SUMMARY: Using standard thermodynamics and previous results of the author,
this paper aims to discuss the conditions for phase equilibrium in a Lennard-Jones
fluid. Possibilities for astrophysical applications of the obtained results are discussed
to some extent, including an unexpected application - in physics of extremely dense
matter concerning studies of neutron stars.
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1. INTRODUCTION

In this paper we explore the conditions for
phase equilibrium in a fluid consisting of neutral
atoms or molecules. Apart from being an interesting
task in pure statistical physics, work on this prob-
lem has several astrophysical motivations. Fluids
consisting of neutral atoms and/or molecules exist
in the interiors and atmospheres of the giant planets
and their icy satellites, but also in the diffuse molec-
ular clouds which are present in large numbers in
galaxies. A new field of possible applications of work
discussed in this paper are the neutron stars. Recent
work shows that the inner crust of neutron stars con-
sists of a lattice of spherical nuclei imersed in a sea of
free neutrons with a background of electrons (Baroni
et al. 2010).

According to http://www.exoplanet.eu, at
the end of December 2011., 716 planets around other
stars were known. Among these planets, there are 83
with orbital semi-major axes between 0.9 and 1.4 as-
tronomical units. On general grounds, it can be ex-
pected that this range of distances from a star corre-
sponds to temperatures under which fluids consisting

of neutral atoms and molecules can exist, which il-
lustrates the planetological importance of the study
of such a fluid. Water, as an example of a plane-
tologically and biologically important molecule can
exist as a liquid in a region of a planetary system in
which the temperature is between 273 K and 373 K.
The upper and lower radii of this zone (the so called
habitable zone) depend on the absolute luminosity
of a star. It can be shown that for a main sequence
star with solar absolute luminosity, the inner and
outer radii of the habitable zone are 0.95 AU and
1.37 AU. An example of this calculation is avaliable
at the adress: http://www.planetarybiology.com.

Examples of early work on the atmospheres of
the giant planets are: Hough (1882, 1903) or Russel
(1935). Results of studies of such a fluid are also
important in studies of cold interstellar clouds and
protoplanetary disks which, because of their low tem-
perature, contain neutral atoms and/or molecules.
For an example of a recent observational study of
protoplanetary disks see Ricci et al. (2008).

The first necessary step in attempting to
model any kind of a physical system is to determine,
in some way, the form of the interparticle potential
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in it. Logically, in order to have the system in equi-
librium, this potential must be a combination of an
attractive and a repulsive part. In the calculations
to be discussed in this paper, the so called Lennard-
Jones (LJ) potential will be used. This potential has
the following analytical form

u(r) = 4ε
[
(
σ

r
)12 − (

σ

r
)6

]
(1)

The symbol ε denotes the depth of the potential,
while σ is the diameter of the molecular ”hard core”.
Obviously, limr→0 u(r) = ∞. It can simply be shown
that limr→σ u(r) = 0 and that (∂u(r)/∂r) = 0 for
rmin = 21/6σ. The depth of the potential well is
u(rmin) = −ε. The term with r−12 corresponds to
the repulsive part of this potential. It is now known,
see for example Stone (2008), that much better re-
sults could be obtained by approximating this term
with a function of the form A exp(−Br) (the so called
Born-Meyer term). However, the 12−6 potential has
the virtue of simplicity.

The following section contains a brief resume
of the basic notions and main previous results, while
the subsequent two parts contain the calculations
and a discussion of their possible applications in as-
trophysics.

2. THE BASIC NOTIONS

Many systems, both natural and laboratory,
show a number of different phases, each of which
can behave in a different way. The obvious question
is what are the conditions under which these differ-
ent phases can exist in equilibrium. The number
of phases which can coexist in equilibrium within a
system can be determined by the Gibbs phase rule,
well known in theromodynamics. Coexisting phases
are in thermal and mechanical equilibrium and can
exchange matter (Reichl 1988). In practical terms,
this means that the temperature, pressure and the
chemical potentials of the phases must be equal. As
shown recently in (Celebonovic 2010), the chemical
potential of the Lennard-Jones fluid is given by

µ = µID − b0pID

∞∑
n=0

1
n!

Γ(
2n− 1

4
)(

ε

T
)

2n+1
4 , (2)

where µID is the chemical potential of the ideal gas,
pID is the pressure of the ideal gas, b0 = 2πσ3NA/3,
NA is Avogadro’s number, and Γ denotes the gamma
function. The pressure and temperature of a LJ fluid
are related by the virial development of the equation
of state (EOS):

pv

kBT
=

∞∑

l=1

al(T )(nλ3)l−1. (3)

All the symbols on the left hand side of this equa-
tion have their standard meanings, while on the right
hand side al are the so called virial coefficients, λ is

the thermal wavelength and v is the inverse number
density v = V/N = 1/n. The thermal wavelength is
given by:

λ = (
2πh̄2

mkBT
)1/2, (4)

where h̄ is Planck’s constant divided by 2π, kB Boltz-
mann’s constant and m the particle mass. Due to
the increasing complexity with increasing order, the
virial developement is most often truncated at sec-
ond order terms. The first virial coefficient is 1, and
the second coefficient for the LJ potential is given by
(for example Reichl (1988), see also Garrett (1980)):

a2(T ∗) = b0

∞∑

j=0

γj(1/T ∗)(2j+1)/4, (5)

where:

γj =
−2j+1/2

4j!
Γ(

2j − 1
4

) (6)

and:
T ∗ =

kBT

ε
. (7)

The values of the first few coefficients γj are: γ0 =
1.733, γ1 = −2.564, γ2 = −0.8665, thus the explicit
expression for the second virial coefficient is:

a2 =
2πNAσ3

3
[1.733(

ε

kBT
)1/4 −

2.56369(
ε

kBT
)3/4 − 0.8665(

ε

kBT
)5/4 − . . .] (8)

As b0 = 2πσ3NA/3 is always positive, it can easily
be shown that a2 ≤ 0 for ( ε

kBT ) > 0.32175.

3. THE CALCULATIONS

The second order approximation to the virial
developement is:

p = nkBT (1 + a2nλ3) (9)

where the coefficient a2 is given by Eq. (7). De-
noting two phases of a system by indices 1 and 2,
and applying to them the condition of the equality
of temperatures and the pressure, one gets the fol-
lowing expression for the basic condition for phase
equilibrium:

n1kBT + n2
1kBa21Tλ3

1 = n2kBT + n2
2kBa22Tλ3

2 (10)

which can be transformed into:

T (n1 − n2) + T (n2
1a21λ

3
1 − n2

2a22λ
3
2) = 0 . (11)

Introducing n1 − n2 = x, this expression can be
solved to give:

x1,2 = n1+
1

2a22λ3
2

[1±[1+4a22n1λ
3
2(1+a21n1λ

3
1)]

1/2] .

(12)
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3.1. Analysis

Eq. (12) can be expressed in the following
form:

x1,2 = n1 + A[1± (1 + y)1/2] , (13)

where:
A =

1
2a22λ3

2

, (14)

and:
y = 4a22n1λ

3
2(1 + a21n1λ

3
1) . (15)

Because of physical considerations, x must be real,
which implies that y ≥ −1. The special case of x = 0
leads to an interesting result. By definition of x this
means that n1 = n2, and by Eq. (11) it implies that
λ1/λ2 = (a22/a21)1/3. Finally, Eq. (4) leads to the
result that m2/m1 = (a22/a21)2/3.

It can easily be shown that y will be negative
if the product a21 × a22 is negative and a22 nega-
tive, which means that a21 has to be positive. Using
the analytical expression for a2 we have shown that
a2 ≤ 0 for ( ε

kBT ) > 0.32175. One of the conditions
for phase equilibrium is T1 = T2 = T which implies
that ε1 < 0.32175kBT and ε2 > 0.32175kBT .

In view of possible astrophysical applications,
note that these two inequalities combine a material
parameter (ε) and an astrophysical parameter (T ).
For example, for H2, which is present in the atmo-
spheres of the giant planets, ε = 33.3kB (for exam-
ple, Putintsev and Putintsev (2004)). This means
that a22 < 0 for T < 104K, which is a realistic limit
in the atmosphere of Jupiter (for example).

Assuming that y = −1, it follows from Eq.
(13) that:

x1,2 = n1 + A (16)

which further means that:

n2 = −A. (17)

The thermal wavelength is positive by defini-
tion, so Eq. (17) is physically posible if a22 < 0.
The sign of a2 depends on the material as well as the
pressure and temperature.

If y = 0 a simple calculation shows that

x1,2 = n1 + A[1± 1] (18)

which leads to two possibilities; either:

n2 = − 1
a22λ3

2

(19)

or
n2 = 0 . (20)

The result expressed by Eq. (20) describes a physi-
cally interesting situation. It shows that y = 0 cor-
responds to the case in which the number density of
one of the phases is zero. An astronomical exam-
ple of such a situation could be the top layer of the
atmosphere of a giant planet.

The limiting case y→ + ∞ has potentially
very interesting physical implications. If the tem-
perature of the material is sufficiently high, λ → 0,
y → 0 but A → ∞. This means that x1,2 → ∞,
which implies that n1 →∞ and n2 is infinite of lower
order than n1. Such a situation looks similar to what
one could expect in the outer layer of a neutron star.

A case which is also physically interesting is
y→+∞ but T → 0. This corresponds to λ →∞, but
A → 0. Finally, it follows that in this case x1,2 = n1,
which further implies that n2 → 0 - the same result
as the one obtained for y = 0.

A function of the form [1 + y]1/2, assuming
|y| < 1, can be developed in Taylor’s series as:

[1 + y]1/2 =
∞∑

n=0

(−1)n(2n)!
(1− 2n)(n!)24n

yn . (21)

Inserting Eq. (21) in Eq. (13) gives the following
explicit form of the result for x1,2:

x1,2 = n1 + A[1±
∞∑

n=0

(−1)n(2n)!
(1− 2n)(n!)24n

yn] , (22)

where y and A are given by Eqs. (14) and (15). As-
suming |y| < 1 and taking into account terms up to
and including y4, Eq. (22) reduces to:

x1,2 = n1 + A[1± (1 +
y

2
− y2

8
+

y3

16
− 5y4

128
)] . (23)

This approximation shows that the difference in
number densities of two phases in equilibrium in a
LJ fluid depends on the parameters of both phases
and (through the virial coefficients) on the parame-
ters of the LJ potential in the two phases. The rela-
tive error δ of this expression compared to the exact
result given by Eq. (13) is δ ≤ 10−3 for |y| ≤ 0.5.

3.2. The final result

The chemical potential of a LJ fluid can also
be expresed as (Celebonovic 2010):

µ = µID + 2pIDa2 (24)

where µID and pID are the chemical potential and
pressure of the ideal gas, and a2 is the second virial
coefficient. Imposing the condition of the equality
of chemical potentials as a prerequisite for the phase
equlibrium of two phases, it follows that:

µID1 − µID2 + 2(pID1a21 − pID2a22) = 0 . (25)

Assume that the ideal gas behaves according to the
Maxwell-Boltzmann (MB) statistics. In that case,
the pressure and chemical potential of the ideal gas
are given by µID = kBT ln(nλ3) and pID = nkBT
(Reichl 1988). Inserting these two expressions into
Eq. (25), and introducing n1 − n2 = x finally leads
to:

ln[(1+
x

n2
)(

λ1

λ2
)3]+2[(n2+x)a21−n2a22] = 0 . (26)
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Inserting the definition of λ from Eq. (4), one
gets:

ln[(1 +
x

n2
)× (

m2

m1
)3/2] + 2[n2(a21− a22) + xa21] = 0

(27)
which is obviously valid only for n2 > 0.

This expression represents a theoretical form
of the link between various parameters of two phases
in equilibrium in a LJ fluid. It contains n, m, λ, σ
and ε for each phase. Three of these parameters (m,
ε and σ) are material dependent, while λ contains a
material parameter (the particle mass) and the tem-
perature. In astronomical applications the number
density depends on the nature of the object being
studied. To render it applicable, various terms in
this equation have to be expressed in a more ”prac-
tical form”, in the sense of replacing the implicit de-
pendence on various material (or object) parameters
in this expression by an explicit formulation.

3.3. Possible cases

The behaviour of Eq. (27) depends on the
functions A, y and a2 which have been previously
defined.

In the case y = −1, using Eqs. (16) and (17),
Eq. (27) takes the following form:

ln[1− 2a22λ
3
2x] +

3
2

ln[
m2

m1
] + 2(n1a21 + Aa22) = 0

(28)
under the condition 2a22λ

3
2x < 1.

If y = 0, there are two possibilities for x given
by Eq. (18): x = n1 + 2A and x = n1. In the first
case, it can be shown that:

ln[1 +
1
n2
× (n1 +

1
a22λ3

2

)] +

3
2

ln[
m2

m1
] + 2× [(n1 +

1
a22λ3

2

)a21 +

n2 × (a21 − a22)] = 0 . (29)

In the case x = n1, one gets the following form of
Eq. (27):

ln[1+
n1

n2
]+2×[n2(a21−a22)+n1a21]+

3
2

ln[
m2

m1
] = 0 .

(30)
The difference a21 − a22 is material dependent
through the values of ε and σ.

An interesting limiting case corresponds to
y→+ ∞. If A and n1 are finite, this case corre-
sponds to x1,2 = n1 − n2 → −∞. Physically speak-
ing, this means that the density of one of the phases
is arbitrarily high and tends to infinity while the

other phase has a finite value of the density which
is remindful of the situation encountered in neutron
stars.

4. THE PRACTICAL FORM

The term containing the logarithm can be ex-
panded into series to give:

ln[(1 +
x

n2
)] =

∞∑

l=0

(−1)l

l + 1
(

x

n2
)l+1 , (31)

which is convergent for |(x/n2)| < 1 (that is, |n1 −
n2| < n2) and the explicit form of the function x is
given by Eq. (12). Introducing the definition of x,
this criterion of convergence amounts to n1/n2 < 2.
The relative error of Eq. (31) pushed to 3 terms
compared to the exact result for the logarithm is
δ ≤ 10−2 for |(x/n2)| < 0.5. Using Eqs. (5)-(7) for
the second virial coefficient, it can be shown that:

a21 − a22 =
2
3
πNAσ3

1

∞∑

j=0

−2j+1/2

4j!
Γ[

2j − 1
4

]

[
(βε1)

2j+1
4 − (

σ2

σ1
)3(βε2)

2j+1
4

]
, (32)

where β = 1/kBT and the second virial coefficient is
approximately given by Eq. (8). Limiting the expan-
sion in Eq. (32) to terms up to and including j = 2,
it follows that:

a21 − a22
∼= 3.62959NAσ3

1(βε1)1/4 × [1−
(
σ2

σ1
)3(

ε2
ε1

)1/4]−

5.36938NAσ3
1(βε1)3/4[1− (

σ2

σ1
)3(

ε2
ε1

)3/4]−

1.81488NAσ3
1(βε1)5/4[1− (

σ2

σ1
)3(

ε2
ε1

)5/4]− . . . (33)

A practical problem related to the applicability of
Eq. (32) is the estimate of the relative error of this
series, taking into account that there is no solution
in closed analytical form for a21 − a22. It can be
estimated by choosing the parameters in Eq. (32),
and then determining the relative difference of the
developement with j and j + 1 terms. Taking arbi-
trarily that j = 3, σ2 = 2σ1, βε2 = 0.05, and that
βε1 ∈ (0.001, 0.9), it follows that the relative error is
δ ≤ 0.025.

Inserting Eqs. (5)-(7), (13), (31) and (32) into
Eq. (27), it follows that
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∞∑

l=0

(−1)l

l + 1
[
n1 + A[1± (1 + y)1/2]

n2
]l+1 +

(3/2) ln(m2/m1) + 2× n2 × 2
3
πNAσ3

1

×
∞∑

j=0

−2j+1/2

4j!
Γ[

2j − 1
4

]

×
[
(βε1)

2j+1
4 − (

σ2

σ1
)3(βε2)

2j+1
4

]

+2× (n1 + A[1± (1 + y)1/2])× 2πNAσ3
1

3
∞∑

j=0

−2j+(1/2)

4j!

×Γ[(2j − 1)/4](βε1)(2j+1)/4

= 0 . (34)

This equation links various parameters of two
phases in equilibrium of a LJ fluid, and it can be ex-
plicitely written with an arbitrary number of terms.
Taking only the terms with j ∈ (0, 3) and l ∈ (0, 3) in
various sums in Eq. (34), expanding out all products
and integer powers leads to the following result:

(3/2) ln[m2/m1] +
x

n2
× [1− (1/2)

x

n2
+

(1/3)(
x

n2
)2 − (1/4)(

x

n2
)3] +

NAA(βε1)1/4(1 +
2n2 + x

A
+

√
1 + y)σ3

1

×[7.25918− 3.62959(βε1)−
10.7388(βε1)1/2 − 1.7898(βε1)3/2]

−7.25918NAn2(βε2)1/4σ3
2 [1− (1/2)(βε2)−

−1.47934(βε2)1/2 − 0.246556(βε2)3/2]
= 0 , (35)

where x has been defined in Eq. (13).
A simplifying case of physical interest is β →

0, which corresponds to high temperature, when sev-
eral terms in Eq. (35) tend to zero. Another inter-
esting simplification corresponds to x = 0. The last
expression can be further simplified by assuming that
m2 = m1, which implies that also λ2 = λ1.

5. POSSIBLE APPLICATIONS
IN ASTROPHYSICS

Eq. (34) links two kinds of parameters, and
it can be applied in two ways. It contains the num-
ber densities and the thermal wavelengths of the two
phases, but it also implicitely contains the second
virial coefficients in the two phases. This expres-
sion can be applied to several kinds of systems: cold

diffuse clouds in our galaxy, the interiors and the at-
mospheres of the giant planets or icy satellites, and
possibly also to neutron stars.

A cold cloud sufficiently far from any star or
other source of radiation certainly contains neutral
atoms and/or molecules, which are known to inter-
act via the LJ potential. Immagine that such a cloud
contains two phases in equilibrium, which means that
their pressure, temperature and chemical potential
are equal. Take, for example, that phase 1 is the gas
at the outer edge of such a cloud, and that phase
2 is the gas at some distance below the top. If the
particle number density in one of the phases, n1, can
be measured, Eq. (34) provides a theoretical answer
to the following question: What is the value of n2 so
that the cloud as a whole remains in phase equilib-
rium? A possible consequence of the impairment of
phase equilibrium can be the onset of star formation.

Globally speaking, giant planets and the icy
satellites consist of fluids and deep in their interiors,
they may contain a dense central core. The fluid en-
velopes are made up mostly of hydrogen and helium,
with (possible) small additions of heavier chemical
elements. The cores are presumed to consist of com-
binations of refractory elements. The exact combi-
nation of elements making up a planetary core can
not be determined directly. It can only be checked
indirectly, by constructing a model of the interior
structure assuming some composition of the core,
and then comparing the observable consequences of
a model with observed data.

In the outer layers of the atmospheres of the
giant planets the matter is neutral, and can accord-
ingly be described by a LJ potential, while in the
deeper regions ionization, strong ion coupling, and
electron degeneracy become important (Fortney and
Nettleman 2010). Modelling the interior structure of
such a system is a complex task in statistical physics;
it demands the knowledge of the chemical composi-
tion and the equation of state. The chemical compo-
sition can be determined from observation only for
the uppermost layer of a giant planet or a satellite.
Regardless of the exact form of the equation of state,
pressure and density of matter increase with depth.
Composing material of a planet or satellite consists
of atoms and molecules, which under increasing pres-
sure become excited and finally ionised.

Taking these considerations into account, how
can Eq. (34) be applied? Material parameters of the
highest levels of the atmosphere can be determined
from observation. In order to apply the calculations
discussed in this paper, it has to be assumed that the
LJ potential is applicable at and/or near the upper
layers of the atmosphere of the object, and that the
object is isothermal, at least until a certain limiting
depth. The next step is to determine, within any par-
ticular theoretical framework, the number of phases
which exist within the isothermal region of the ob-
ject being considered, and assume that these phases
are in equilibrium. When this number is known,
Eq. (34) gives the possibility to calculate the sec-
ond virial coefficient a22 and the thermal wavelength
λ2 in the phase immediately below the surface. By
repeating this procedure it becomes possible to ”fol-
low” changes of the second virial coefficient and the
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thermal wavelength with depth below the surface.
Interesting conclusions can be drawn concern-

ing the time evolution of the equilibrium in a LJ
fluid. Immagine that in a given moment of time one
of the parameters in Eq. (34) changes. A change the
easiest to envisage is the change of the particle mass
in one of the phases. In such a situation one would
expect the equilibrium be disturbed and the system
(or the part of it which was considered) start evolv-
ing in time. There is however a possibility that some
other parameter (or parameters) changes in such a
way that the equilibrium is maintained. Details will
be discussed elsewhere.

6. CONCLUSIONS

In this paper we have analyzed the phase equi-
librium in a Lennard-Jones fluid. The starting points
are the basic conditions for phase equilibrium well
known in statistical physics, and the recent expres-
sion for the chemical potential of a Lennard-Jones
fluid. The result of calculation is an expression for
the condition for phase equilibrium, given by Eq.
(27) in its most general form, or by Eq. (34) for
the case of a Lennard-Jones fluid. In deriving Eq.
(34) it was assumed that the ideal gas contribution
to Eq. (25) is governed by the Maxwell-Boltzmann
statistics. It would be interesting to repeat the same
calculation but with another form of statistics. Sev-

eral possible applications in astrophysics were indi-
cated including one unexpected - the neutron stars.
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Koriste�i autorove ranije rezultate
kao i opxte principe statistiqke fizike,
u radu su analizirani uslovi za ravnote�u
faza u Lenard-�onsovom fluidu. Ukazano je

na mogu�e primene dobijenih rezultata u as-
trofizici, ukǉuquju�i i jednu neoqekivanu
- u oblasti veoma guste materije, dakle neu-
tronskih zvezda.
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