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SUMMARY: According to General Relativity, there are factors like mass, rota-
tion, charge and presence of Cosmological constant that can influence the path of
light ray. Apart from these factors, many authors have also reported the influence
of gravitomagnetism on the path of light ray. In this study we have discussed the
effect of a rotating Kerr-Taub-NUT body where the strength of the gravitomag-
netic monopole is represented by the NUT factor or magnetic mass. We use the
null geodesic of photon method to obtain the deflection angle of light ray for a
Kerr-Taub-NUT body in equatorial plane upto the fourth order term. Our study
shows that the NUT factor has a noticeable effect on the path of the light ray. By
considering the magnetism to be zero, the expression of bending angle gets reduced
to the Kerr bending angle. However, we obtained a non-zero bending angle for a
hypothetical massless, magnetic body.
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1. INTRODUCTION

One of the most significant predictions of gen-
eral relativity is gravitational light deflection. There
are few physical parameters that can affect the space-
time geometry, namely, gravitational mass, rotation,
charge and cosmological constant. Einstein calcu-
lated the first order contribution of mass on the path
of light ray. After Einstein, a number of authors
worked in this field and obtained the higher order
contribution of mass for static bodies (Keeton and
Petters 2005, Virbhadra and Ellis 2000, Iyer and Pet-
ter 2007) and naked singularity (Virbhadra and Ellis
2002) for both strong and weak field limit. On the
other hand, few authors were working on rotating
Kerr mass in equatorial (Iyer and Hansen 2009) or
off equatorial plane (Bozza 2003, Chakraborty and
Sen 2015a) and obtained the deflection angle as well

as other lensing parameters. Azzami et al. (2011) ob-
tained the two individual components (parallel and
perpendicular to equatorial plane) of the light deflec-
tion angle in quasi-equatorial regime. In one of the
studies, Dubey and Sen (2014, 2015) have used the
Kerr and Kerr-Newman mass to show how gravita-
tional redshift gets affect as a photon is emitted from
various latitudes. In some recently published work,
the present authors (Chakraborty and Sen 2015b)
and (Hasse and Pelrick 2006) showed the effect of ro-
tating charge bodies on the path of light ray. Eiroa
et al. (2002) calculated the deflection angle and lens-
ing parameters for static charge bodies. Virbhadra
et al. (1998) worked on the Janis-Newman-Winicour
(JNW) mass which is a charged, static mass and cal-
culated the light deflection angle up to the second
order.
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On the other hand, some authors have used
the material medium approach, where the gravita-
tional effect on light ray was calculated by assum-
ing some effective refractive index assigned to the
medium through which light propagates. Using this
approach Atkinson (1965) studied the trajectory of
light ray near an extremely massive, static and spher-
ically symmetric star. This approach was also used
to calculate deflection angle of light, upto second or-
der Fischback and Freeman (1982) and under strong
deflection limit A. K. Sen (2010) for static bodies.
In earlier past a similar method was used by Balaz
(1958), to calculate the change in the direction of
polarization vector of electromagnetic wave passing
close to a rotating body. Roy and Sen (2015) in one
of their recent works have calculated the trajectory
of a light ray in Kerr field using this material medium
approach.

The concept of the effect of cosmological con-
stant on the light deflection angle was first intro-
duced by Rindler and Ishak (2007). They derived the
formula for light deflection angle under de Sitter back
ground (i.e the non zero cosmological constant) ac-
cording to which a positive cosmological constant di-
minishes the bending angle. Bhadra et al. (2010) ob-
tained the light deflection angle in the Schwarzschild
de Sitter (SDS) geometry, where they computed the
bending angle in the SDS space-time by taking the
proper cosmological constant involved in the solu-
tion of the trajectory of light. Sultana (2013) in his
paper used the method of Rindler and Ishak (2007)
to obtain a weak field approximation for the bend-
ing angle in the Kerr de Sitter space time. Kraniotis
(2014) obtained the solution of null geodesics that
describes photon orbits in the space time of a ro-
tating electrically charged black hole including the
contribution from the cosmological constant.

The concept of generalized Schwarzschild met-
ric was first introduced by Newman, Tamburino and
Unti (1963). This metric contains one arbitrary pa-
rameter in addition to the mass generally known
as the NUT factor or gravitomagnetic mass. In
the same year, Misner (1963) studied the gener-
alized Schwarzschild metric and called it as NUT
(named after Newman, Tamburino and Unti) space
time. According to him, this line element has a

Schwarzschild-like singularity, but this singularity is
not observed in the curvature tensor. The presence
of the cross term dtdϕ, shows that this space has a
strength of gravitomagnetic monopole (Nouri-Zonoz
and Lynden-Bell 1998). Lensing effect of this type
of mass was studied by Nouri-Zonoz and Lynden-
Bell (1997). Chakraborty and Sen (2017) have ob-
tained the deflection angle due to Taub-NUT body
and showed that the NUT factor and static charge
have complete opposite effect to the space-time ge-
ometry.

The Kerr-Taub-NUT (KTN) line element
(Demianski and Newman 1966, Miller 1973) con-
tains three parameters, namely the mass, rotation
parameter, and NUT factor. Wei et al. (2012) nu-
merically studied the quasi-equatorial lensing by the
stationary, axially-symmetric black hole in the KTN
space time in the strong field limit. Abdujabbarov et
al. (2008) studied the electromagnetic fields in the
KTN space time as well as in the surrounding space
time of a slowly rotating magnetized NUT star and
obtained analytical solutions of Maxwell equations.
Chakraborty and Majumdar (2014) derived the exact
Lense Thirring precession frequencies for the Kerr,
KTN and Taub-NUT space time. Pradhan (2015)
performed a detailed analysis of photon orbit by in-
vestigating the equatorial null circular geodesics as
well as the time like geodesic for the Kerr-Newman-
Taub-NUT black hole. He obtained the conditions
for the existence of marginally bound circular or-
bit and null circular geodesics of the Kerr-Newman-
Taub-NUT space times. Cebeci et al. (2016) used
the Hamilton-Jacobi method to derive the equations
of motion for a charged test particle in the back-
ground of the Kerr-Newman-Taub-NUT spacetime.
They also examined the stability of spherical orbits
with respect to the NUT parameter. For zero static
charge, results in Pradhan (2015) and Cebeci et al.
(2016) are reduced to that of the KTN space time.

In this present work, we studied the KTN line
element and obtained the equatorial light deflection
angle for such space time geometry up to fourth order
term which is a function of mass, rotation parameter
and the NUT factor. We also studied variation of
the light deflection angle as a function of the NUT
factor. For zero NUT factor our result reduces to the
well known Kerr light deflection angle.

2. GENERAL GEODESICS EQUATIONS IN KTN SPACE TIME

The KTN solution expressed in the Boyer-Lindquist-like coordinates (ct, r, ϑ, ϕ) is given by the fol-
lowing metric (Demianski and Newman 1966, Miller 1973),

ds2 =
−∆
ρ2

[cdt + (2n cos ϑ− a sin2 ϑ)dϕ]2 +
sin2 ϑ

ρ2
[acdt− (r2 + n2 + a2)dϕ]2

+
ρ2

∆
dr2 + ρ2dϑ , (1)

where, ∆ = r2− 2mr + a2−n2, ρ2 = r2 +(n+ a cosϑ)2, m = GM
c2 and a = J

cM further c, G, M , J and n are
the velocity of light in free space, gravitational constant, mass, angular momentum of the gravitating body,
and the NUT charge. Both m and n have the dimension of length. If we set a = 0, Eq. (1) will reduce to
Taub-NUT solution.
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Two horizons are located at the of roots of r2 − 2mr + a2 − n2 = 0 i.e:

r± = m±
√

m2 − a2 + n2 . (2)

As shown by Miller (1973), the KTN space time does not have curvature singularities but there exist conical
singularities on the axis of symmetry which lead to the emergence of closed time-like curves in the space. So
it can be concluded that, the KTN solution is completely different from other rotating solutions of Einstein’s
equation in terms of singularity structure (Cebei et al. 2016).

Now that we have considered that the light ray is moving through the KTN space time, the related
generalized geodesic equations can be obtained from the line element in Eq. (1) using the Hamilton-Jacobi
equation (Chandrasekhar 1983, Bini et al. 2003) as:

ρ2ṙ =
√

R(r) , (3)

ρ2ϑ̇ =
√

Θ(ϑ) , (4)

ρ2ϕ̇ = −[a− 2n cot ϑ csc ϑ]E + L csc2 ϑ +
a[E(r2 + n2 + a2)− aL]

∆
, (5)

ρ2cṫ = −E[sin2 ϑ(a + 2n csc2 ϑ)2 − 4n{n + a(1 + cos ϑ)}]

−(2n cos ϑ csc2 ϑ− a)L +
(r2 + a2 + n2)

∆
[E(r2 + a2 + n2)− aL] , (6)

where:

R(r) = [E(r2 + a2)− aL]2 + n2E[2a2E − 2aL + E(n2 + 2r2)]−∆[K + (aE − L)2] (7)

and:

Θ(ϑ) = K − cos2 ϑ[−a2E2 +
L2

sin2 ϑ
] + 2n cos ϑ[2aE2 + 2EL csc2 ϑ]− 4n2E2 cot2 ϑ . (8)

Here the dot indicates the derivative with respect to the affine parameter. The three constants of motion
are L (angular momentum of the particle along the direction of rotation), E (energy of the particle), and K
(Carter constant).

3. EQUATORIAL GEODESICS EQUATIONS IN KTN SPACE TIME

The main objective of this paper is to calculate the light deflection angle for the KTN geometry in the
equatorial plane. So, at this point we converted the generalized geodesic equations to equatorial geodesic
equations. The conditions for the equatorial plane are ϑ = π

2 (Pradhan 2015). But Cebeci et al. (2016)
showed that equatorial orbits can exist for arbitrary NUT parameter for the constraint relation between
energy, angular momentum of test particle, and the rotation parameter which is:

L =
a(2E2 − µ2)

2E
,

where µ is the mass of the test particle. Using these conditions, the modified equatorial geodesic equations
can be obtained.

The modified version of Eq. (3) will be:

(r2 + n2)2ṙ2 = [E(r2 + a2)− aL]2 + n2E[2a2E − 2aL + E(n2 + 2r2)]−∆(aE − L)2 . (9)

Here the dot indicates the derivative with respect to the affine parameter τ . As we have already shown
in our previous work (Chakraborty and Sen 2015b) that the impact parameter is the ratio of L and E
(Chandrasekhar 1983). Following Iyer and Hansen (2009), we write the impact parameter bs ≡ sb = s( L

E ),
where s = +1 for a prograde and s = −1 for a retrograde orbit of light ray and b is the positive magnitude
of the impact parameter. So, the new form of the above equation is:

(r2 + n2)2ṙ2 = L2[
r4

b2
+ (1− a

bs
)2(2mr + n2)− r2(1− a2

b2
)

+2n2{(1− a

bs
)− (1− a2

b2
)}+

n2

b2
(4r2 + n2)] . (10)
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As r obtains a local extremum for the closest approach r0, we write:

ṙ|r=r0 = 0 .

Thus, from Eq. (10):

r2
0

b2
= −(1− a

bs
)2(2

m

r0
+

n2

r2
0

) + (1− a2

b2
)

−2
n2

r2
0

{(1− a

bs
)− (1− a2

b2
)} − n2

b2
(4 +

n2

r2
0

) . (11)

From Eqs. (4) and (8), it is clear that:
ϑ̇|ϑ= π

2
= 0 . (12)

From Eq. (5) we get (under boundary condition ϑ = π
2 ):

(r2 + n2)ϕ̇ =
L

∆
[
2mra

b
+ r2 − 2mr + n2(

2a

b
− 1)] . (13)

From Eq. (6) we get (under boundary condition ϑ = π
2 ):

(r2 + n2)cṫ =
1
∆

[−E{a2(r2 − 2mr + a2 − n2)− (r2 + a2 + n2)2} − 2aL(mr + n2)] . (14)

Eqs. (10), (13) and (14) are the equatorial geodesic equations governing the motion of light ray under the
KTN space time geometry.

4. RADIUS OF PHOTON SPHERE

In this section of the paper we obtain the equatorial circular orbit (representing photon sphere) with
radius rph. The photon radius rph is defined by the condition R(r) = dR(r)

dr = 0, for r = rph (Chakraborty
and Sen 2015). So, from Eq. (9) we have the following equations:

E2(r4 + n4) + (L− aE)2(2mr + n2)− r2(L2 − a2E2) + n2[2a2E
2 − 2aEL + 2r2E2] = 0

or:

E2 + (
2m

r3
ph

+
n2

r4
ph

)(L− aE)2 − 1
r2
ph

(L2 − a2E2) + E2(
n4

r4
ph

)

+
n2

r4
ph

[2a2E2 − 2aEL] +
2n2E2

r2
ph

= 0 ,

and:
d

dr
[E2 + (

2m

r3
ph

+
n2

r4
ph

)(L− aE)2 − 1
r2
ph

(L2 − a2E2) + E2(
n4

r4
ph

)

+
n2

r4
ph

[2a2E2 − 2aEL] +
2n2E2

r2
ph

] = 0 ,

or:

r2
ph{(L2 − a2E2)− 2n2E2} − rph{3m(L− aE)2} − {2n2(L− aE)2 + 2E2n4 + 2n2(2a2E2 − 2aEL)} = 0 .

Solving the above equation for rph we get,

rph = [3m(L− aE)2 ± [9m2(L− aE)2 − 4n2{(L2 − a2E2)− 2n2E2}{2(L− aE)2

+2E2(n2 + a2)− 2aEL}] 1
2 ]/[2{(L2 − a2E2)− 2n2E2}] .

The above equation represents the equatorial circular orbit. For n = 0, we get:

rph = 3m
L− aE

L + aE
.

This is the expression for radius of equatorial circular orbit (Chandrasekhar 1983).
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5. EQUATORIAL LIGHT DEFLECTION ANGLE

The light deflection angle can be expressed as (Weinberg 1972):

α = 2
∫ ∞

r0

(
dϕ

dr
).dr − π . (15)

Now, using Eqs. (10) and (13) in Eq. (15) we have:

α = 2
∫ ∞

r0

[
2mra

b
+ r2 − 2mr + n2(

2a

b
− 1)]/∆[

r4

b2
+ (1− a

bs
)2(2mr + n2)

−r2(1− a2

b2
) + 2n2{(1− a

bs
)− (1− a2

b2
)}+

n2

b2
(4r2 + n2)]

1
2 .dr − π (16)

or:

α = 2
∫ ∞

r0

[1− 2m

r
+

2ma

br
+

n2

r2
(
2a

b
− 1)]/[1− 2m

r
+

a2

r2
− n2

r2
][

r4

b2
+ (1− a

bs
)2(2mr + n2)

−r2(1− a2

b2
) + 2n2{(1− a

bs
)− (1− a2

b2
)}+

n2

b2
(4r2 + n2)]

1
2 .dr − π . (17)

We introduce a new variable x = r0
r . So:

dx = −r0dr

r2

or:
dx

r0
= −dr

r2
.

The limits change as: when r −→ ∞, then x −→ 0, and when r −→ r0, then x −→ 1. We use this in above
equation:

α = 2
∫ 1

0

f1

f2

√
f3

.dx− π , (18)

where:
f1 = 1− 2hxF − l2x2(2F − 1)

f2 = 1− 2hx + â2h2x2 − l2x2 ,

and:

f3 =
r2
0

b2
+ F 2x2(2hx + l2x2)−Gx2 + 2l2x4(F −G) + l̂2x2(4 + l2x2) .

Further, h = m
r0

and l2 = n2

r2
0
, l̂2 = n2

b2 , and â = a
m . So, the mass and NUT factor are now represented by h and

l. We again follow Aazami et al. (2011) and substitute G = 1−(a
b )2 = 1−â2(m

b )2 and F = 1−( a
bs

) = 1−sâm
b .

Thus for zero rotation (â = 0), F = G = 1.
We use the expression:

r2
0

b2
= −(1− a

bs
)2(2

m

r0
+

n2

r2
0

) + (1− a2

b2
)− 2

n2

r2
0

{(1− a

bs
)− (1− a2

b2
)} − n2

b2
(4 +

n2

r2
0

) =

G− F 2(2h + l2)− 2l2(F −G)− l̂2(4 + l2)

from Eq. (11) in f3 and after rearranging we get:

f3 = (G− 4l̂2)(1− x2)− 2hF 2(1− x3)− [F 2l2 + 2l2(F −G) + l̂2l2](1− x4) .

We substitute G− 4l̂2 = A, so the new form of f3 is:

f3 = A(1− x2)− 2hF 2(1− x3)− [F 2l2 + 2l2(F −G) + l̂2l2](1− x4) ,
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or:

f3 = A(1− x2)[1− 2hF 2

A
(
1− x3

1− x2
)][1− {F 2l2 + 2l2(F −G) + l̂2l2}

A
(1 + x2){1− 2hF 2

A
(
1− x3

1− x2
)}−1] .

Following Chakraborty and Sen (2015b), we substitute F 2h(1−x3)
A(1−x2) = δ2 and {F 2l2+2l2(F−G)}(1+x2)

A = δ1. So,
the new form of f3, using δ2 and δ1 is:

f3 = A(1− x2)[1− 2δ2][1− (δ1 +
l2 l̂2(1 + x2)

A
)(1− 2δ2)−1] .

Putting these values of f1, f2 and f3 in Eq. (18), we get:

α = 2
∫ 1

0

f1f
−1
2√

A
√

1− x2
√

1− 2δ2

√
1− (δ1 + l2 l̂2(1+x2)

A )(1− 2δ2)−1

.dx− π . (19)

Now, rearranging the above equation we write:

α = 2
∫ 1

0

dx√
A
√

1− x2
f1f

−1
2 (1− 2δ2)−

1
2 [1− (δ1 +

l2 l̂2(1 + x2)
A

)(1− 2δ2)−1]−
1
2 − π . (20)

For the weak deflection limit, one can assume n,m ¿ r0, in other words, h, l ¿ 1. So, Eq. (18) can
be expanded in the Taylor series in terms of both h and l. Here we calculate the deflection angle considering
contribution up to fourth order terms in the mass and NUT factor only and write:

α = 2
∫ 1

0

dx√
A
√

1− x2
f1[1 + 2hx + x2h2(4− â2) + x3h3(8− 4â2) + x4h4(â4 − 12â2 + 16)]

[1 + x2l2(1 + 2hx + x2h2{4− â2}) + x4l4][1 + δ2 +
3
2
δ2
2 +

5
2
δ3
2 +

35
8

δ4
2 ]

[1 +
δ1

2
(1 + 2δ2 + 4δ2

2) +
3
8
δ2
1 +

l2 l̂2(1 + x2)
2A

]− π .

In above, we substitute s0 = −â2 + 4 − 4F , s1 = −4â2 + 8 + 2F â2 − 8F and s2 = â4 − 12â2 + 16 +
8â2F − 16F by following Chakraborty and Sen (2015b). Then, multiplying and integrating term by term
and retaining only up to fourth order in both h and l, l̂ we get the new form the above equation as:

α = c0π + 4h[c1 − l2(1− F )√
A

{2 + (
8
3
− π

2
)
F 2

A
+

5
6A

(F 2 + 2(F −G))}+ (
7
2
− 3π

8
)
l2F 2(F 2 + 2(F −G))

A
5
2

]

+h2[−4c2 +
15π

4
d2 +

l2√
A
{3π

8
(16− 16F − 3â2 + 2â2F ) + (−24 +

45π

4
)
F 2(1− F )

A
+

F 4(1− F )
A2

(
105π

8
− 32)

+
7πs0

16A
(F 2 + 2(F −G)) + (

825π

32
− 50)

F 4(F 2 + 2(F −G))
A3

+ (
81π

8
− 18)

F 2(1− F )(F 2 + 2(F −G))
A2

}]

+h3
(122

3
c3 − 15π

2
d3

)
+ h4

(
− 130c4 +

3465π

64
d4

)
+ l2[

(1− F )π√
A

+
3π{(F 2 + 2(F −G)) + l̂2}

4A
3
2

]

+l4[
3(1− F )π

4
√

A
+

7π(1− F )
8A

3
2

(F 2 + 2(F −G)) +
57π(F 2 + 2(F −G))2

64A
5
2

] , (21)

where:

c0 =
1√
A
− 1 ,

c1 =
F 2 + A− FA

A
3
2

,
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c2 =
F 2

A
c1 ,

d2 =
1

15A
5
2
[15F 4 − 4A(F − 1)(3F 2 + 2A)− 2A2â2] ,

c3 =
1

61A
7
2
[61F 6 −A(F − 1)(45F 4 + 32F 2A + 16A2)− 4G2â2(2F 2 + 2A− FA)] ,

d3 =
F 2

A
d2 ,

c4 =
F 2

65A
9
2
[65F 6 − 49(F − 1)F 4A + 8F 2A2s0 + 2s1A

3] ,

d4 =
1

1155A
9
2
[1155F 8 − 840(F − 1)F 6A + 140F 4s0A

2 + 40s1F
2A3 + 8s2A

4] .

The above substitution was followed from Aazami et al. (2011) and Chakraborty and Sen (2015b).
The above Eq. (21) represents the equatorial deflection of light under the KTN geometry in the weak

field limit. This expression is a function of mass, rotation and the NUT factor. As mentioned earlier in the
text, the assumption used for derivation here is that both n ¿ r0 and m ¿ r0. Thus, this result can be
reduced to that of the Kerr metric by setting n = 0.

If we set the NUT factor equal to zero in Eq. (21), we can have the expression of deflection for light
by the Kerr mass obtained by Aazami et al. (2011).

If we set mass and rotation equal to zero, i.e h = 0, F = G = 1 and A = 1− 4l̂2 in Eq. (21), we get:

α = l2[
3π

4
[1 + l̂2]

(1− 4l̂2)
3
2
] + l4[

57π

64(1− 4l̂2)
5
2
] . (22)

This is the amount of deflection of light ray occurring only due to the NUT factor. Thus, a hypothetical
massless, static body with non zero NUT factor can influence the curvature of space time.

6. DISCUSSION OF RESULTS

In this study, we obtain the expression of
the event horizon from Eq. (2) which is r± =
m±√m2 − a2 + n2. The above expression represents
two event horizons and for a2 > m2+n2, there will be
no event horizon, i.e. naked singularity will appear,
which will violate the causality of the space time and
is forbidden according to the Penroses cosmic censor-
ship conjecture (Wei et al. 2012). It clearly gives a
limit to the value of (m2 +n2), i.e it must be greater
than a2.

To understand the physical significance of the
calculation done in this paper, we plot the bend-
ing angle (α) against various physical parameters
(â, l, b) in Fig. 1, Fig. 2, Fig. 3, respectively
by taking the Sun as a test case. In our previ-
ous work (Chakraborty and Sen 2015b), we obtained
the equatorial deflection angle for the Kerr-Newman
(rotation with electric charge) body where we used
the Sun as a test case and plotted bending angle
against various physical parameters by considering
that the Sun has some static charge and the clos-
est approach of the light ray is the radius of the
Sun. Following Chakraborty and Sen (2015b), here
we consider that the Sun has some NUT charge
l = 1.413850947× 10−6 and the closest approach
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Fig. 1. Bending angle (arcsec) as a function of
rotation parameter (a/m) with constant NUT factor
l = 1.413850947 × 10−6 and the impact parameter
is of one solar radius. Here, three different curves
represent the prograde (when the light ray moves in
the direction of rotation of the body), corresponding
Taub-NUT (zero rotation), and retrograde (when the
light ray moves in the opposite direction of the rota-
tion of the body) motion of light ray.
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is the radius of the Sun (6.955 × 108 m). The value
of l = n/r0 was chosen in such a way that (m2 + n2)
is always greater than a2. Here we would like to
mention that the values of the NUT parameter are
chosen arbitrarily as we do not know the exact value
of the NUT parameter related to any astrophysical
body. But we took the values of l in the same order
as that of the static charge parameter of our previous
work (Chakraborty and Sen 2015) to draw a compar-
ison between the effect of the NUT factor and static
charge on the space-time geometry.

Fig. 1 clearly shows the difference between the
prograde and retrograde motion with respect to the
zero rotation Taub-NUT case. The nature of bend-
ing angle versus the rotation parameter curve is sim-
ilar to the result obtained by Iyer and Hansen (2009)
and Chakraborty and Sen (2015b) for the Kerr and
Kerr-Newman equatorial bending, respectively.
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Fig. 2. Bending angle (arcsec) as a function of
charge l = n/ro with constant rotation parameter
â = 0.5 and impact parameter is one solar radius.
Geometries are explained in the caption for Fig. 1.

From Fig. 2, it can be said that deflection
of the light ray increases with the increase of the
NUT parameter of the body. For the zero NUT fac-
tor, the light ray has minimum deflection. We know
that the presence of static charge reduces the amount
of deflection of light (Chakraborty and Sen 2015b).
So, it can be seen that the NUT factor and static
charge influence the space time geometry in opposite
direction. The presence of the NUT factor increases
the light deflection angle compared to the zero field
Kerr case. On the other hand, the presence of static
charge decreases the light deflection angle with re-
spect to the Kerr case.

Fig. 3 shows the change of bending angle
with impact parameter, though the pattern is sim-
ilar to that given by Iyer and Hansen (2009) and
Chakraborty and Sen (2015b), but the prograde, ret-
rograde, and the zero spin Taub-NUT plot overlap
with each other as the difference between them are
small for the Sun. So, following Chakraborty and

Sen (2015b), we consider a slow rotating pulsar PSR
J 1748-2446 (Nuñez and Nowakowski 2010) as a test
case and plot the bending angle against the impact
parameter in Fig. 4. We consider that the pulsar
has some NUT charge l = 1.413850947 × 10−6 and
that the closest approach corresponds to the phys-
ical radius of the pulsar which is 20 km. The pat-
tern of the plot is similar to that given by Iyer and
Hansen (2009) and Chakraborty and Sen (2015b).
For this pulsar we consider m = 1.99 km and cal-
culate a as 0.96 km from the input values of time
period T = 1.393 ms and r0 = 20 km as listed by
Nuñez and Nowakowski (2010).
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Fig. 3. Bending angle (arcsec) as a function of
impact parameter in the unit of solar radius with
constant rotation (â = 0.5) and the NUT factor
l = 1.413850947 × 10−6. Geometries are explained
in the caption for Fig. 1. All the plots for the pro-
grade, Taub-NUT and retrograde merge together for
the Sun.
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Table 1. Comparison between α(â, l) and α(a) by taking the Sun as a test case.

(â) α(â, l) α(a) α(â,l)−α(â)
α(â)

0 1.7506562043022 1.7506555712511 3.6160805× 10−7

.2 1.7506554034600 1.7506547704096 3.6160778× 10−7

.4 1.7506544860391 1.7506538529890 3.6160770× 10−7

.6 1.7506534520394 1.7506516684129 3.6160739× 10−7

.8 1.750015680 1.75001595 1.99× 10−7

-.2 1.7506568885657 1.7506562555139 3.6160828× 10−7

-.4 1.7506574562505 1.7506568231980 3.6160856× 10−7

-.6 1.7506579073566 1.7506572743034 3.6160887× 10−7

-.8 1.7506582418840 1.7506576088300 3.6160925× 10−7

To understand the effect of the NUT factor
more specifically, a comparison has been made be-
tween the light deflection angle as a function of
both the rotation parameter and NUT factor α(â, l)
against the deflection angle as a function of only the
rotation parameter α(â) using the following factor:

α(â, l)− α(â)
α(â)

.

We consider the Sun as the test case and reproduced
the results in Table 1. It is clear from the table that
the NUT factor does have some noticeable effect on
the light deflection angle which increases with the re-
duction of the rotation parameter. For the Sun the
effect is in the order of 10−7 arcsec. In this study, we
concentrate only on the equatorial deflection angle
of light in the KTN background.

Abdujabbarov et al. (2008) reported the rela-
tion between the NUT factor and the magnetic field
of a gravitating body. Our work will allow the cal-
culation of the value of NUT factor and by using the
calculation of Abdujabbarov et al. (2008), one will
be able to obtain the magnetic field of any gravitat-
ing body. It is known that pulsars have a very high
magnetic field. Our work can also be used to obtain
all the physical parameters of pulsars, i.e the mass,
rotation parameter, magnetic field.

7. CONCLUSIONS

From the above study the following may be
concluded:

1. Expression for the equatorial deflection of
light due to a KTN body has been calculated con-
sidering contributions from the mass and NUT factor
up to fourth order terms.

2. The NUT factor has a noticeable effect
on the path of the light ray. When compared with
the Kerr expression for bending, we find that there
are some extra terms in the expression for deflection
which occurred due to the presence of the NUT fac-
tor. If the NUT factor is set to zero, the deflection
angle gets reduced to that of the Kerr deflection an-
gle. When we compare the effect of the NUT factor
with that of static charge, we could see that these
two parameters have opposite effect on the space-
time geometry.

3. As we know, with the KTN metric even
with a hypothetical body of zero mass and non-zero
NUT factor, one can have some effect on the space-
time curvature.
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SKRETAǋE SVETLOSTI U EKVATORIJALNOJ RAVNI
POD UTICAJEM KER-TAUB-ǋUT TELA
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Originalni nauqni rad

Prema Opxtoj teoriji relativnosti,
masa, rotacija, naelektrisaǌe i prisustvo
kosmoloxke konstante mogu uticati na putaǌu
zraka svetlosti. Osim ovih uticaja mnogi au-
tori naxli su i uticaj gravitomagnetizma na
putaǌu zraka svetlosti. U ovoj studiji disku-
tovali smo efekat rotiraju�eg Ker-Taub-
ǋUT tela, gde je snaga gravitomagnetnog
monopola predstavǉena ǋUT faktorom ili
magnetnom masom. Koristimo metodu nultog

geodezika fotona da dobijemo ugao skretaǌa
zraka svetlosti za Ker-Taub-ǋUT telo u ek-
vatorijalnoj ravni, sve do qlana qetvrtog
reda. Naxa studija pokazuje da ǋUT fak-
tor ima primetan efekat na putaǌu zraka
svetlosti. Za magnetizam jednak nuli, izraz
za ugao skretaǌa se svodi na Kerov ugao
skretaǌa. Me�utim, za hipotetiqko bezmaseno
magnetno telo dobili smo nenulti ugao skre-
taǌa.
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