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Miodrag Živković

Let Fq denote the finite field of order q = pn, where p is prime and n ≥ 1.
The multiplicative group F ∗q of nonzero elements of Fq is cyclic and a generator of
F ∗q is called a primitive element. A monic irreducible polynomial whose roots are
primitive elements is called a primitive polynomial.

It is known [G] that the binary (over GF (2)) sequence {an}n≥0 satisfying the
linear recurrent relation ak+n =

∑n−1
i=0 ak+ifi possesses good statistical properties

if its characteristic polynomial f =
∑n
i=0 fix

i is primitive. For example, the period
length of such sequence (so called m–sequence) is N = 2n−1, the difference between
the number of ones and zeros across the period is exactly one, and each n–tuple from
{0, 1}n except 0 appears exactly once in one period. The two sequences {an+r} and
{an+s}, 0 ≤ r < s ≤ N , are mutually orthogonal, i.e., the equality

N∑
n=0

(−1)an+r (−1)an+s =
{
N + 1, for 0 ≤ r = s ≤ N
−1, for 0 ≤ r < s ≤ N.

holds. m–sequences are used for obtaining uniformly distributed random num-
bers [T]. Another field where m–sequences are widely used is cryptology [M]. Quality
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of m–sequences grows with n, and therefore there is a need to obtain primitive poly-
nomials of degree as large as possible.

There are several published tables of primitive binary polynomials. Watson [W2]
gives for n < 100 one primitive of degree n, and Stahnke [S] lists for each n ≤ 168
a primitive with a minimum number of nonzero coefficients (trinomial or pen-
tanomial). Zierler and Brillhart [Z1,Z2] extended this work by listing all primitive
and irreducible trinomials of degree n ≤ 1000, with the period for some for which
the factorization of 2n − 1 is known. Rodemich and Rumsey [R] have listed all
primitive trinomials of degree Mj , 12 ≤ j ≤ 17 (here Mj denotes the jth Mersenne
exponent, the prime for which 2Mj −1 is also prime). The list has been extended by
Zierler [Z], Kurita and Matsumoto [K] and Heringa, Blöte and Compagner [H] up
to M23 = 11213, M28 = 86243 and M31 = 216091 correspondingly. One primitive
pentanomial of each degree Mj , 8 ≤ j ≤ 27 is also listed in [K]. For those n < 5000,
for which the factorization of 2n−1 is known, in [Ž1,Ž2] the first primitive trinomial
(if such exists) and a randomly generated primitive 5– and 7–nomial of degree n in
GF (2) are given.

In this paper we give some characteristics of the algorithm for generation of
primitive binary polynomials which is used to assemble the tables in [Ž1,Ž2].

Generation of primitive polynomials is performed by testing primitivity of the
sequence of trial polynomials from the given set. Here we deal with the set of poly-
nomials f of degree n with t terms, for given n and odd t, with the constraint
f(0) = 1. The number t is usually small, to enable simple calculation of the cor-
responding linear recurrent sequence. The sequence of trial polynomials is formed
using the linear recurrent sequence of order 127 as a source of random numbers.

The primitivity test of a given polynomial f is effectively performed using the
following set of conditions [L, Th 3.18]

(1) f(0) = f(1) = 1,

(2) min{k | f | x2k − x} = n,

(3) for all prime p | 2n − 1 f - x(2n−1)/p − 1.

The condition (1) eliminates polynomials divisible by x and x + 1. As t is odd
for trial polynomials, this condition is automatically fulfilled.

The polynomial x2k − x is equal to the product of all irreducible polynomials of
degree dividing k [L, Th 3.20], and therefore the irreducible polynomials satisfy the
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conditions (1) and (2). The inverse is not true: a polynomial equal to the product
of different irreducible polynomials of degrees dividing n satisfy (1) and (2) (and it
is not irreducible). The number of irreducible polynomials of degree n equals to [L,
Th 3.25]

1
n

∑

d|n
µ(d)2n/d,

where µ is the Moebius function, defined by

µ(n) =





1 if n = 1
(−1)r if n is the product r distinct primes
0 if n is divisible by the square of a prime.

To check if f satisfy (2), it is necessary to calculate n residues x2k − x (mod f).
Squaring in GF (2) is simple, because (a+b)2 = a2+b2. After each squaring, a residue
is calculated from the division of a polynomial of degree at most 2n− 2 by f . The
fact that f is sparse is used to perform division more efficiently. The total number
of elementary (inGF (2)) operations needed to test the condition (2) is bounded by
O(tn2), which is not small, having in mind the number of polynomials that need
to be checked. The problem is solved in the usual way (see for example [H]): the
condition (2) is modified by previously checking the conditions

(2a) (f, x2k − x) = 1, 2 ≤ k ≤ 12,

(2b) (f, f ′) = 1,

where (f, g) is the greatest common divisor of f and g, which is computed by the
Euclidean algorithm. This makes the complete test (2) more complicated, but for
the large part of trial polynomials (85% according to the estimate from [H]) it is
ended by (2a). The condition (2b) eliminates the polynomials divisible by the square
of a polynomial.

The numerical complexity of finding the factorization of 2n−1 is very large. This
makes it unreasonable to include the factorization as a part of the primitivity check.
Even more, it is unreasonable to compute these factorizations at all, because all
those of them that are known can be found in [B,W1] (which is an output of the
famous Cunningham project). Therefore the factorizations from [B,W1] are input
in a data base using a special program. The process is not straightforward, because



4 M. Živković

in cited references there are actually four tables, containing (not always complete)
factorizations of the numbers
(A) 22k−1 − 1, k ≤ 600,
(B) 22k−1 + 1, k ≤ 600,
(C) 24k−2 + 1 = LM,L = 22k−1 − 2k + 1, M = 22k−1 + 2k + 1, k ≤ 600,
(D) 24k+1 + 1, k ≤ 300.
The first step is to list all n < 4800 for which all the prime factors of 2n − 1 can
be found. For some values of n, the number 2n − 1 has simple algebraic factors.
These algebraic factors are then further split in the algebraic factors or their prime
factors are taken from one of the tables A, B, C or D. The program for updating
the factorization data base tests automatically the factors during the input. It uses
algebraic factors and the factors that are already in the data base. This is useful
for example if the factorization of 22n − 1 is to be input when the factorization of
2n − 1 is already input.

The efficiency of the primitivity check depends also on the order in which the
prime factors of 2n− 1 are used in (3): the check is carried out for the small factors
p first, because according to [L, Th 3.5] the probability that (3) is not satisfied is
greater for small than for large prime factors.

The number of primitive polynomials of degree n is φ(N)/n [L, Th 3.5] (here
φ(n) is Euler’s function, showing the number of integers i with 1 ≤ i ≤ n that are
relatively prime to n). Therefore a randomly chosen binary polynomial is primitive
with the probability α/n where

α = (1− 2−n)
∏

p|N
(1− 1

p
).

The complexity of this primitivity check isO(ktn2), where k is the number if different
prime factors of 2n−1. Taking into account the ”density” of primitive polynomials,
an upper bound for the complexity of generation of one primitive polynomial is
roughly estimated by O(ktn3). The program, when running on a PC with the 80486
microprocessor on 66MHz, gives one primitive polynomial of degree 500 (1000) after
about 2 min (20 min).
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