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REGULAR GRAPHS WITH SMALL SECOND LARGEST

EIGENVALUE

Tamara Koledin, Zoran Stanić

We consider regular graphs with small second largest eigenvalue (denoted by
λ2). In particular, we determine all triangle-free regular graphs with λ2 ≤

√
2,

all bipartite regular graphs with λ2 ≤
√
3, and all bipartite regular graphs of

degree 3 with λ2 ≤ 2.

1. INTRODUCTION

The characteristic polynomial and the eigenvalues of a simple graph G are
defined as the characteristic polynomial and the eigenvalues of its adjacency matrix
A (= A(G)). If G has n vertices, then its eigenvalues, in non-increasing order, are
denoted by λ1 (= λ1(G)), λ2 (= λ2(G)), . . . , λn (= λn(G)).

There is a number of results concerning graphs with small second largest
eigenvalue. The graphs whose second largest eigenvalue is at most

√
2 − 1 are

determined [13]. It is proven in [3] that the set of minimal forbidden subgraphs

for λ2 ≤
√
5− 1

2
is finite, and the structure of these subgraphs is described. In

addition, there are many results in which the upper bound for λ2 does not exceed
1 (see [14] or [9]), or 2. The graphs with λ2 ≤ 2 are called reflexive [13]. More
details on graphs with small second largest eigenvalue including their applications
can be found in [2], [13], or [4]. Here we just recall that the second largest eigenvalue
plays an important role in determining the structure of regular graphs. In addition,
regular graphs with small second largest eigenvalue often have high connectivity
properties, and they are relevant to theoretical computer science, the designs of
robust computer networks, the theory of error correcting codes, and to complexity
theory [8].
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In our previous work we considered regular graphs with λ2 ≤ 1 (see [14] and
[9]). We now increase this bound, and we completely determine all triangle-free
regular graphs with λ2 ≤

√
2, all bipartite regular graphs with λ2 ≤

√
3, and all

bipartite reflexive cubic (i.e. regular graphs of degree 3) graphs. We use both theo-
retical and computational methods; for the computer search we use the GENREG
(a program for fast generation of regular graphs developed by M. Meringer [11]).

The paper is organized as follows. In Section 2 we fix the notation and
mention some results from the literature in order to make the paper more self-
contained. In the next three sections we consider regular graphs whose second
largest eigenvalue does not exceed

√
2,

√
3, and 2, respectively. In Section 6 we

give some additional data on obtained graphs.

2. PRELIMINARIES

A path, cycle and a complete graph on n vertices will be denoted by Pn, Cn

and Kn, respectively. A complete bipartite graph with n1 (resp. n2) vertices in the
first (resp. second) colour class will be denoted by Kn1,n2

. The complement of G
is denoted by G. We will use ’∪̇’ to denote the disjoint union of two graphs, while
’∪’ will stand for the union of two sets. The graph consisting of k disjoint copies of
G will be denoted by kG. The set of vertices of G will be denoted by XG (= X).
If S ⊂ X then G[S] denotes the induced subgraph determined by S. The degree
of a regular graph G will be denoted by rG (= r), while the corresponding graph
will be called r-regular. The set of neighbours of a vertex v ∈ G will be denoted
by N(v), and then we denote N [v] = N(v) ∪ {v}. For the remaining notation we
refer the reader to [2].

The bipartite complement of connected bipartite graph G with two colour

classes U and W is bipartite graph G with the same color classes having the edge
between U and W exactly where G does not. If G is bipartite r-regular graph on
2n vertices, and adjacency matrix

(1) A(G) =

(

0 N
NT 0

)

,

then G is bipartite (n− r)-regular graph, with adjacency matrix

A(G) =

(

0 J −N
J −NT 0

)

,

where J is all-1 matrix. By [15, Theorem 4.1], the characteristic polynomials of G

and G satisfy
PG(x)

x2 − r2
=

P
G
(x)

x2 − (n− r)2
,

and so apart from the eigenvalues ±r of G and ±(n − r) of G, the spectra of G

and G are the same. Note that if G is disconnected then its bipartite complement
is not uniquely determined, but even then the above formula remains unchanged.
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Finally, we describe the LCF notation (see [1]) that will be used in Section 4,
and Section 5. If G is a Hamiltonian cubic graph then its vertices can be arranged
in a cycle C which accounts for two edges per arbitrary vertex v. The third edge
vu can be described by the length l of the path vu in C with a sign plus if we turn
clockwise, or minus if we turn counterclockwise along C. If the pattern of the LCF
notation repeats, it is indicated by a superscript in the notation. If the second half
of the numbers of the LCF notation is the reverse of the first half, but with all
the signs changed, then it is replaced by a semicolon and a dash. Obviously, this
notation is not unique.

Note that the similar notation can be used for other Hamiltonian r-regular
graphs, but now for each vertex we have a set of r − 2 numbers representing its
adjacency in the way described above.

3. TRIANGLE-FREE REGULAR GRAPHS WITH λ2 ≤

√

2

In [14] and [9] we have described the procedure of determining regular graphs
that satisfy the condition λ2 ≤ 1, which enabled us to identify the resulting graphs
in some particular cases. Here we rise up the corresponding bound to

√
2. Next,

we include the additional condition within triangle-free graphs. Clearly, the degree
of any regular graph satisfying 1 < λ2 ≤

√
2 must be at least 2, and any such a

graph is connected.

First we prove a general result.

Theorem 1. Let G be a connected r-regular (r ≥ 3) graph satisfying λ2 <
√
r.

Then diam(G) ≤ 3.

Proof. Let G be a connected r-regular graph with diameter at least 4, and consider
two vertices u and v at distance 4. Then there are no edges between N [u] and N [v],
and, by eigenvalue interlacing, λ2(G) ≥ λ2(G[N [u] ∪ N [v]]) ≥ min(λ1(G[N [u]]),
λ1(G[N [v]]) ≥ λ1(K1,r) =

√
r (where the last inequality follows from [2, Theorem

0.7]), a contradiction.

According to the above theorem, the diameter of any r-regular graph (r ≥ 3)
with λ2 ≤

√
2 is at most 3.

Connected bipartite regular graphs with λ2 ≤
√
2 are determined in [15].

These graphs are Kr,r (r ≥ 1), rK2 (r ≥ 3), C8, the Heawood graph and its
bipartite complement (the Heawood graph has 14 vertices [2, p. 225]). Therefore,
we consider next only non-bipartite triangle-free regular graphs satisfying the same
condition. Since there are exactly two non-bipartite 2-regular graphs with λ2 ≤

√
2

(C5 and C7), in the following we can assume that r ≥ 3.

Figure 1. Two forbidden subgraphs for regular graphs with λ2 ≤ 2.
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First we establish an upper bound on r. We use the graphs H1 and H2

depicted in Fig. 1. Graph H1 is forbidden subgraph for the property λ2 ≤
√
2 in

the family of regular graphs because the least eigenvalue of H1 is less than −1−
√
2

(and for every regular graph G, λ2(G) = −λn(G) − 1 holds), and H2 is forbidden
subgraph (in general) for the same property.

Lemma 1. Let G be a non-bipartite triangle-free r-regular graph satisfying λ2 ≤√
2. Then r ≤ 5.

Proof. First, G cannot contain Ck (k ≥ 9) as an induced subgraph since λ2(Ck) >√
2. Even more, if r ≥ 6 then G does not contain C7 as an induced subgraph

(otherwise G contains K1,6∪̇K2 as an induced subgraph, but the least eigenvalue
of its complement is less than −1 −

√
2, implying λ2(G) >

√
2). Since G is non-

bipartite, it then must contain C5 as an induced subgraph.

If r ≥ 10, considering the neighbuorhood of a single vertex belonging to a C5

(contained in G) we get that G must contain at least one of the graphs Hi (i = 1, 2)
as an induced subgraph, and therefore λ2(G) >

√
2.

Let further 6 ≤ r ≤ 9 and let v be an arbitrary vertex of G. Denote by U
the set of vertices of G which are at distance 2 from v (obviously U is non-empty),
and for u ∈ U define d∗(u) to be the number of common neighbours of u and v
(d∗(u) ≥ 1). There are four cases to consider.

Case 1: r = 9. Suppose that U contains a vertex u with d∗(u) = 3. Then
the induced subgraph G[N(u)△N(v)] (where △ stands for symmetric difference)
must be bipartite 3-regular (otherwise G contains either H1 or H2 as an induced
subgraph) on 12 vertices. There are five connected such graphs (see [2, p. 300-306]),
and one disconnected (2K3,3), and for each of them λ2 >

√
2.

Similarly, if U contains a vertex u with d∗(u) = 4 then G[N(u)△N(v)] must
be bipartite 2-regular. It is clear that for such a graph either λ2 = 2 (if it is

disconnected), or λ2 =
1 +

√
5

2
>

√
2 (if it is connected).

Therefore, two vertices at distance 2 in G either have less than three, or more
than four common neighbours. Suppose now that there is a vertex u ∈ U , with
1 ≤ d∗(u) ≤ 2, and let w ∈ N(u) ∩N(v). Now, each neighbour of u (not adjacent
to v) has at least five neighbours among the neighbours of v (not adjacent to u),
and vice versa (otherwise G contains H1 as an induced subgraph). Since G cannot
contain H2 as an induced subgraph, each vertex in N(u)\N(v), as well as each
vertex in N(v)\N(u) can be adjacent to at most one vertex in N(w)\{u, v}, but
then G contains H1 as an induced subgraph. Thus, every two vertices at distance
2 in G must have more than four common neighbours, but then C5 cannot be an
induced subgraph of G, a contradiction.

Case 2: r = 8. Suppose that U contains a vertex u with d∗(u) = 3, and
set N(u)\N(v) = {w1, . . . , w5}. For each wi ∈ N(u)\N(v), 2 ≤ d∗(wi) ≤ 3 holds
(otherwise G contains either H1 or H2 as an induced subgraph). Since there are
five vertices in N(u)\N(v), there are either two of them satisfying d∗(wi) = 2 and
having at least one common neighbour in N(v)\N(u), or there are two of them
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satisfying d∗(wi) = 3 and having at least two common neighbours in N(v)\N(u).
By direct computation we get that each of the possible four subgraphs of G (induced
by u, N [v], and two vertices of N(u)\N(v) described above) has λ2 >

√
2.

On the other hand, if U contains a vertex u with 1 ≤ d∗(u) ≤ 2, let w ∈
N(u)∩N(v), and then the remainder of the proof is the same as the corresponding
part in Case 1.

Case 3: r = 7. If n ≥ 28 then, according to [7, Theorem 2.1.8], G does not
contain K2,3 as an induced subgraph, so for every u ∈ U , d∗(u) ≤ 2 must hold.
Let u ∈ U be a vertex with d∗(u) = 2 (such a vertex must exist, otherwise G
contains P2 with six pendant edges attached to each of the two endvertices, and
such a graph has λ2 >

√
2). Now, the subgraph G[N(u)△N(v)] must be bipartite

2-regular (otherwise G contains either H1 or K2,3 as an induced subgraph), and for
such a subgraph λ2 >

√
2.

If 24 ≤ n ≤ 26 then, according to [7, Theorem 2.1.8], G does not contain
neither K2,4, nor K3,3 as an induced subgraph, so there is a vertex u ∈ U with
d∗(u) = 3. Of course, the three vertices in N(u) ∩N(v) must have all their neigh-
bours (distinct from u and v) in X\(N(u) ∪N(v)). In addition, no vertex of G is
adjacent to all three common neighbours of u and v.

If n = 26, since there are exactly 15 edges betweenN(u)∪N(v) andX\(N [u]∪
N [v]), there must be at least two vertices adjacent to two common neighbours of u
and v. Consider the partition of X in four parts: A = N(u)∩N(v), B is the set of
the above mentioned two vertices (adjacent to two vertices of A), C = {u, v}, and
D = X\(A ∪B ∪C). This partition induces the quotient matrix

Q1 =













0 3 0 4

2 0
4

3

11

3
0 2 0 5
8

19

11

19

10

19

104

19













.

According to [7, Theorem 1.2.3], we have λ2(G) > λ2(Q1) >
√
2.

If n = 24 there are at least four vertices which do not belong to N [u]∪N [v],
and which are adjacent to two common neighbours of u and v. Thus G contains
K2,4 as an induced subgraph, which is a contradiction.

If n = 22 thenG cannot contain neitherK2,5, norK3,3 as an induced subgraph
(cf. [7, Theorem 2.1.8]), so either d∗(u) = 3 for all u ∈ U , or there is a vertex u ∈ U
with d∗(u) = 4. In the first case, it is easy to check that diam(G) = 2, so G must
be a strongly regular graph with parameters (22, 7, 0, 3), but such a graph does
not exist (see, for example, [2, Theorem 7.3]). In the second case it can be easily
verified that (under the assumption that G does not contain neither K3,3, nor H2

as an induced subgraph), a vertex w ∈ X\(N [u] ∪ N [v]) adjacent to exactly five
vertices of N(v) (or N(u)) must exist, but then the subgraph G[u ∪ w ∪N [v]] (or
G[v ∪ w ∪N [u]]) has λ2 >

√
2.

If n = 20 then, according to [7, Theorem 2.1.8], G does not contain K2,6, nor
K3,4 as an induced subgraph, so for every u ∈ U , d∗(u) ≤ 5 must hold. Suppose
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first that there is a vertex u ∈ U with the property d∗(u) = 5. Each vertex
belonging to the set N(u) ∩N(v) has all its neighbours (distinct from u and v) in
X\(N(u)∪N(v)). Denote by A = X\(N [u]∪N [v]). Since |A| = 9 and each vertex
in A can have at most 3 neighbours in N(u) ∩ N(v), counting the edges between
the sets N(u) ∩ N(v) and A, we get that A either contains 7 vertices with three
neighbours in N(u)∩N(v) and 2 vertices with two neighbours in N(u)∩N(v), or 8
vertices with three neighbours in N(u) ∩N(v) and one vertex with one neighbour
in N(u) ∩ N(v). In both cases the number of edges between A and N(u)△N(v)
would be greater than 24, which is not possible.

Suppose now that there is a vertex u ∈ U with the property d∗(u) = 4.
Counting the edges between the sets N(u)∩N(v) and A = X\(N [u]∪N [v]) (note
that now |A| = 8) we get that A must contain 4 vertices with three neighbours
in N(u) ∩ N(v) and 4 vertices with two neighbours in N(u) ∩ N(v), which is not
possible (otherwise, G would contain a vertex u′ with d∗(u′) = 5, and this case is
already excluded).

The inequality d∗(u) ≤ 3 cannot hold for each vertex u ∈ U , since there are
42 edges between the sets N(v) and U .

There are exactly 8 triangle-free 7-regular graphs on 18 vertices. Computing
their spectra, we get that none of them satisfies the property λ2 ≤

√
2.

If n ≤ 16 then G, since it is triangle-free, must be bipartite [5].

Case 4: r = 6. If n ≥ 22 then, according to [7, Theorem 2.1.8], G does not
contain K2,3 as an induced subgraph, so either there are two vertices with just one
common neighbour in which case the subgraph induced by their ten non-common
neighbours must be bipartite 2-regular (otherwise G contains H1 as an induced
subgraph), but obviously, for such a subgraph λ2 >

√
2 holds, or every two vertices

at distance 2 in G have exactly two common neighbours. If so, then diam(G) = 2,
and thus G must be a strongly regular graph with parameters (22, 6, 0, 2), but such
a graph does not exist (see [2, Theorem 7.3] if necessary).

Suppose now that n ∈ {20, 21}. According to [7, Theorem 2.1.8], G does not
contain K2,4 nor K3,3 as an induced subgraph. This implies that there is a vertex
u ∈ U with d∗(u) = 3. Now, all three vertices of N(u)∩N(v) must have their other
neighbours in S = X\(N(u) ∪ N(v)). Since each vertex of S can be adjacent to
at most two vertices in N(u) ∩N(v), there must be at least two of them adjacent
to exactly two vertices from the same set. Consider now the partition of X with
A = N(u) ∩ N(v), B is the set of the above mentioned two vertices adjacent to
two vertices of A, C = {u, v}, and D = X\(A∪B ∪C). This partition induces the
quotient matrix

Q2 =













0 3 0 3

2 0
4

3

8

3
0 2 0 4
6

n− 7

8

n− 7

8

n− 7

6n− 64

n− 7













.

We get λ2(Q2) >
√
2 for n ∈ {20, 21}, which yields λ2(G) >

√
2.
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The cases 15 ≤ n ≤ 19 can be considered in the similar way or by computer
search. Using the latter option we get that among 4010 connected triangle-free
6-regular graphs obtained none satisfies the condition λ2 ≤

√
2.

If n ≤ 14 then G, since it is triangle-free, must be bipartite [5].

We have bounded degree of non-bipartite triangle-free regular graphs with
λ2 ≤

√
2 and the resulting cases are: r = 3, 4, 5. Now, in each of these cases we

bound the number of vertices using the following inequality concerning triangle-free
regular graphs [10]:

n ≤ r2(λ2 + 2)− rλ2(λ2 + 1)− λ 2
2

r − λ 2
2

.

We also use the known fact that if G is a simple triangle-free graph on n

vertices and minimum degree d satisfying d >
2

5
n then G must be bipartite (see

[5]). This gives us the lower bound on the number of vertices in the non-bipartite
case. Thus:

(i) if r = 5 then 14 ≤ n ≤ 22,

(ii) if r = 4 then 10 ≤ n ≤ 19,

(iii) if r = 3 then 8 ≤ n ≤ 18.

Note that for r = 5 the cases n = 20 and n = 22 can be considered in a similar
way as in Lemma 1, but here we verify the non-existence of the resulting graphs
using computer search and the fact that the diameter of any putative graph is at
most 3 (Theorem 1). For the remaining cases we use the brut force, i.e. we generate
all possible connected non-bipartite triangle-free regular graphs using GENREG,
and then we eliminate those with λ2 >

√
2. The results are summarized in the

following theorem.

Theorem 2. There are exactly 9 non-bipartite triangle-free regular graphs whose

second largest eigenvalue does not exceed
√
2. Apart from C5, C7, the Petersen

graph, the Clebsch graph (it has 16 vertices [2, p. 185]), the remaining five graphs

are depicted in Fig. 2.

Figure 2. Five graphs from Theorem 2.

Collecting the results of [15] and Theorem 2, we get the following theorem.
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Theorem 3. There are two infinite families of connected triangle-free regular

graphs with λ2 ≤
√
2 (Kr,r (r ≥ 1), and rK2 (r ≥ 3)), and exactly 12 additional

graphs : C8, Heawood graph, its bipartite complement, and the graphs from Theorem

2.

Spectra of graphs given in Theorem 3 are listed in Table 1 (here and below,
the exponents stand for the multiplicity of the eigenvalue; graph and its bipartite
complement are given in the same row).

graph n diam spectrum

Kr,r (r ≥ 1) 2r 1 or 2 r, 02r−2,−r

rK2 (r ≥ 3) 2r 3 r − 1, 1r−1,−1r−1,−r + 1
C8 8 4 2, 1.412, 02,−1.412,−2

Heawood(Heawood) 14 3(3) 3(4), 1.416,−1.416,−3(−4)
C5 5 2 2, 0.622,−1.622

C7 7 3 2, 1.252,−0.452,−1.802

G1 8 2 3, 12, 0.412,−1,−2.412

Petersen 10 2 3, 15,−24

G2 10 2 4, 1.232, 05,−3.232

G3 11 2 4, 1.402, 0.552, 0.372,−1.092,−3.232

G4 12 2 4, 16, 0,−22,−32

G5 13 2 4, 1.384, 0.274,−2.664

Clebsch 16 2 5, 110,−35

Table 1. Connected triangle-free regular graphs with λ2 ≤
√
2.

4. BIPARTITE REGULAR GRAPHS WITH λ2 ≤

√

3

We proceed to determine all bipartite regular graphs with the property λ2 ≤√
3. Let G be such a graph and, since any bipartite regular graph must have an

even order, in this and in the next section we shall assume that G has 2n vertices.
Since all bipartite regular graphs with λ2 ≤

√
2 are already determined, we can

restrict ourselves to bipartite regular graphs with
√
2 < λ2 ≤

√
3. Obviously, any

such a graph is connected.

Lemma 2. Let G be a bipartite r-regular graph satisfying
√
2 < λ2 ≤

√
3. Then

r ≤ 9.

Proof. Suppose that r ≥ 10, and denote two colour classes of G by U and W ,
respectively. If we fix one vertex v ∈ U then we can partition W into two disjoint
subsets: A = N(v) of size r, and B = W\A of size m = n− r.

Let m ≥ 4. Suppose that there is a vertex u ∈ U adjacent to ℓ ≥ 4 vertices
of B. Then A must contain at least ℓ vertices not adjacent to u. So G contains
2K1,4 as an induced subgraph, and therefore λ2(G) >

√
3 holds. Consequently,

every vertex in U is adjacent to at most 3 vertices of B. Counting the number of
edges having one endvertex in B and those with one endvertex in U , we get

rm ≤ 3(r +m− 1),
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or m ≤ 3r − 3

r − 3
, and (since r ≥ 10) we have m ≤ 27

7
< 4, which yields |B| ≤ 3. Two

cases arise: m = 2 and m = 3 (for m ∈ {0, 1}, λ2(G) <
√
2).

If m = 2 then 2n = 2(r+2). The bipartite complement of G is a bipartite 2-

regular (possibly disconnected) graph. Since r ≥ 10 we have λ2(G) = λ2(G) >
√
3.

If m = 3 then 2n = 2(r+3). A simple counting implies that there are at least
r− 4 vertices in U adjacent to all three vertices of B. Let C ⊆ U be the set of r− 4
such vertices. Consider the partition of the vertex set of G: v, A, C, U \ (C ∪{v}),
B. The corresponding quotient matrix has the form

(2) Q =















0 r 0 0 0

1 0
r2 − 7r + 12

r

6(r − 2)

r
0

0 r − 3 0 0 3
0 r − 2 0 0 2
0 0 r − 4 4 0















.

We get λ2(G) ≥ λ2(Q) =

√

5r − 12

r
, which, together with the assumption r ≥ 10,

yields λ2(G) >
√
3. A contradiction.

Our next step is to bound the order of the desired graphs. We check that if
r = 2 then n ≤ 6.

Lemma 3. Let G be a bipartite 3-regular graph on 2n vertices with
√
2 < λ2 ≤

√
3.

Then n ≤ 9.

Proof. Suppose that n ≥ 10. Then G is (n − 3)-regular, and considering the

vertex partition of the vertex set of G described in the previous lemma, we get the

quotient matrix (2) with r = n− 3, and thus λ2(G) = λ2(G) ≥
√

5n− 27

n− 3
>

√
3, a

contradiction.

If 4 ≤ r ≤ 9, using the inequality concerning r-regular graphs with diameter

3, n ≤ 2
r2 − λ 2

2 (G)

r − λ 2

2
(G)

[10, Theorem 3.2]), we get:

(i) if r = 9 then n ≤ 13, (iv) if r = 6 then n ≤ 11,

(ii) if r = 8 then n ≤ 12, (v) if r = 5 then n ≤ 11,

(iii) if r = 7 then n ≤ 11, (vi) if r = 4 then n ≤ 13.

Considering the above cases, we get that if G and G are bipartite regular graphs

with
√
2 < λ2(G) = λ2(G) ≤

√
3, and if G satisfies one of the conditions (i)-(iv)

then the degree of G is between 2 and 5. So, we can restrict our search to bipartite
r-regular graphs with

√
2 < λ2 ≤

√
3, and 2 ≤ r ≤ 5.
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If r = 2, we easily get that the only resulting graphs are C10 and C12.

If r = 3, we have n ≤ 9. There are 209 connected bipartite regular graphs
satisfying these conditions on r and n. Four of them satisfy

√
2 < λ2 ≤

√
3

(C10, I1, I2, and I3 of Table 2).

Let r = 4. It is sufficient to consider the cases 8 ≤ n ≤ 13, since if n ≤ 7 then
any resulting graph is necessarily a bipartite complement of some already obtained
solution with lower degree. If n = 13 the resulting graph is a unique bipartite
4-regular graph on 26 vertices and diameter 3 (namely, this graph must be the
incidence graph of a symmetric balanced incomplete block design with parameters
(13, 4, 1), and there exists exactly one such design [12]) – I4 of Table 2. There is
a unique bipartite 4-regular graph on 2n = 24 vertices and diameter 3 [6], but its
second largest eigenvalue is greater than

√
3. Similarly, if n = 11 there are two

corresponding graphs [6], but again λ2 >
√
3 for both graphs.

If 8 ≤ n ≤ 10, according to [7, Theorem 2.1.8], G does not contain K2,3

as an induced subgraph. Also, according to Theorem 1, diam(G) ≤ 3, and since
diam(G) > 2 (the only connected bipartite regular graph with diameter 2 is the
complete bipartite graph), we get diam(G) = 3. This means that two vertices
belonging to the same colour class of G must have either one or two common
neighbours. Denote two colour classes of G by U and W , respectively, and let v be
an arbitrary vertex belonging to U . Counting the edges between N(v) and U \ {v},
we get the following facts:

1. if n = 10, the set U \ {v} contains exactly 3 vertices with two common
neighbours with v and 6 vertices with one common neighbour with v,

2. if n = 9, the set U \ {v} contains exactly 4 vertices with two common neigh-
bours with v and 4 vertices with one common neighbour with v,

3. if n = 8, the set U \ {v} contains exactly 5 vertices with two common neigh-
bours with v and 2 vertices with one common neighbour with v.

Let (1) be the adjacency matrix of G, and suppose first that n = 10 holds. Then
NNT = 4I + 2M + (J − I − M), where M is the adjacency matrix of some 3-
regular graph on 10 vertices. Since λ2(NNT ) = λ2

2
(G) ≤ 3, we get λ2(M) ≤ 0.

The graph corresponding to M is obviously connected, and it must be complete
multipartite (see [2, Theorem 6.7]), but of course, no such 3-regular graph on 10
vertices exists. Suppose now that n = 9. In the same way we get that then the
graph corresponding to M must be a complete multipartite 4-regular graph on 9
vertices, and such a graph does not exist. Similarly, if n = 8, we get that a complete
multipartite 5-regular graph on 8 vertices would exist, which is a contradiction.

Let r = 5. As in the previous case, it is sufficient to consider the cases n = 11,
and n = 10. In the first case, any two vertices in the same colour class must have
exactly two common neighbours (in any other case λ2(G) >

√
3 holds). In other

words, the resulting graph corresponds to a symmetric balanced incomplete block
design with parameters (11, 5, 2), and there is exactly one such design [12]. It is
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the graph I5 of Table 2. If n = 10, then in the same way as in the cases r = 4,
8 ≤ n ≤ 10, we can deduce that then a connected complete multipartite 2-regular
graph on 10 vertices would exist, which is not possible.

Summarizing the above results we get the following theorem.

Theorem 4. There are exactly 13 bipartite regular graphs satisfying
√
2 < λ2 ≤√

3. They are listed in Table 2 (we use the LCF notation to represent the graphs

Ii (i = 1, . . . , 5)).

graph 2n diam
LCF notation
of Ii (i = 1, . . . , 5)

spectrum
(non-negative part)

C10(C10) 10 5(3) 2(3), 1.622, 0.622

C12(C12) 12 6(3) 2(4), 1.732, 12, 02

I1 12 3 [5,−5]6 3, 1.732, 13

I2(I2) 16 4(3) [5,−5]8 3(5), 1.734, 13

I3(I3) 18 4(3) [5, 7,−7;−]3 3(6), 1.736, 04

I4(I4) 26 3(3) [{−7,−11}, {7, 11}]13 4(9), 1.7312

I5(I5) 22 3(3) [{−5, 11, 3}, {−3, 11, 5}]11 5(6), 1.7310

Table 2. Bipartite regular graphs satisfying
√
2 < λ2 ≤

√
3.

5. BIPARTITE CUBIC REFLEXIVE GRAPHS

Any regular graph of degree at most 2 (connected or not) is reflexive. Here
we determine all bipartite reflexive cubic graphs. Every such a graph must be
connected. We start with the following theorem.

Theorem 5. Every bipartite reflexive cubic graph has at most 30 vertices. If any

such a graph has exactly 30 vertices then its second largest eigenvalue must be equal

to 2.

Proof. Consider any bipartite cubic graph on 2n ≥ 30 vertices, and let G be its
bipartite complement. Then G is (n−3)-regular and, by Theorem 1, its diameter is
3. Let v be an arbitrary vertex of G, and consider the partition of X with A = {v},
B = {u ∈ X, d(u, v) = 1}, C = {u ∈ X, d(u, v) = 2}, D = {u ∈ X, d(u, v) = 3}.

We have: |B| = n − 3, |C| = n − 1, |D| = 3. Also, each vertex in D has
exactly n − 3 neighbours in C, and simple counting shows that there are at least
n − 7 vertices in C adjacent to all three vertices in D. If C1 is the set of such
n − 7 vertices of C, we denote by C2 = C\C1, so |C2| = 6. Now the partition of
X : A, B, C1, C2, D induces the quotient matrix (2) with r = n − 3, and we get

λ2(G) ≥ λ2(Q) =

√

5n− 27

n− 3
. Thus, if n > 15 then λ2(Q) > 2, while if n = 15 then

λ2(Q) = 2, and the proof follows.

Theorem 6. The Tutte-Coxeter graph is a unique bipartite reflexive cubic graph

on 30 vertices. There are no such graphs on 28 vertices.
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Proof. Suppose that there is a bipartite reflexive cubic graph on 2n (n ∈ {14, 15})
vertices, and let G be its bipartite complement. Consider the refinement of the
partition of X described in the previous theorem: A = {v}, B = {u ∈ X, d(u, v) =
1}, D = {u ∈ X, d(u, v) = 3}, Ci = {u ∈ X, d(u, v) = 2, u has exactly i neighbours
in D}, where i ∈ {0, 1, 2, 3}, and let |Ci| = ci. We have |D| = 3, and same as in
the previous theorem, c3 ≥ n− 7.

If n = 15, by Theorem 5, λ2(G) = 2, and we also have |B| = 12 and
3

∑

i=0

ci =

14. Using the last equality and counting the edges starting from
⋃3

i=0
Ci, we get

12c0 + 11c1 + 10c2 + 9c3 = 132, and consequently 3c0 + 2c1 + c2 = 6.

The partition of X : A, B,
2
⋃

i=0

Ci, C3, D induces a quotient matrix whose

second largest eigenvalue is

√
6

2

√

24− c3
14− c3

. Now,

√
6

2

√

24− c3
14− c3

≤ 2 gives c3 ≤ 8, and

since in this case c3 is at least 8, we get c3 = 8, c2 = 6, and c0 = c1 = 0. This
means that for each vertex v of G there are exactly six vertices with ten neighbours
in N(v), and exactly eight vertices with nine neighbours in N(v). Thus, if (1) is
the adjacency matrix of G, we have the following decomposition:

(3) NNT = 12I + 10M + 9(J − I −M) = 3I + 9J +M,

where M is the adjacency matrix of some 6-regular graph on 15 vertices, while I
and J denote the identity and all-1 matrices of size 15× 15, respectively.

Since λ2(NNT ) = λ2
2
(G) = 4, using the equation (3), we get λ2(M) = 1.

According to [9, Theorem 3.4], there are seven 6-regular graphs on 15 vertices with
λ2 = 1. The matrix NNT has non-negative spectrum, and this property fails to
hold for 6 out of 7 candidates for matrix M . The seventh one pases this test: it is a
strongly regular graph with spectrum [6, 19,−35]. Thus, the spectrum of G would
be [±12,±29, 010], and the spectrum of its bipartite complement [±3,±29, 010].
There is a unique graph with this spectrum, known as the Tutte-Coxeter graph
[13, p. 115].

If n = 14 then |B| = 11, and
3

∑

i=0

ci = 13. Already described partition of X

induces a quotient matrix whose second largest eigenvalue is in this case equal to
1

2

√

1452 − 60c3
143 − 11c3

which, together with c3 ≥ 7, yields c3 = 7. We also get a unique

possibility for the remaining parameters: c2 = 6, and c0 = c1 = 0. Same as in the
previous part of the proof, we get NNT = 11I + 9M + 8(J − I − M), where M
is the adjacency matrix of some 6-regular graph on 14 vertices with λ2(M) = 1.

According to [9, Theorem 3.4], the only such a graph is 7K2, but it does not produce
any solution (since in this case NNT does not have non-negative spectrum).

Using computer search we generated exactly 280250 connected bipartite cubic
graphs on at most 26 vertices. Those with

√
3 < λ2 ≤ 2 are given in the following

theorem.
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Theorem 7. There are exactly 17 bipartite cubic graphs satisfying
√
3 < λ2 ≤ 2.

They are listed in Table 3.

Combining the results given in the previous two sections, summarized in
Theorem 3 and Theorem 4, as well as those in Theorem 7, we get the following
result.

Theorem 8. There are exactly 24 bipartite reflexive cubic graphs. These are

K3,3, 4K2, the Heawood graph, C10, the graphs Ii (i = 1, 2, 3) of Table 2, and

the graphs of Table 3.

graph 2n diam LCF notation
spectrum
(non-negative part)

J1 10 3 [5,−3,−3, 3, 3]2 3, 2, 12, 02

J2 12 4 [−3, 3]6 3, 22, 1, 04

J3 12 4 [−5,−5, 3,−5,−5,−3;−] 3, 2, 1.412, 1, 02

J4 14 4 [5,−3, 5, 7, 5,−5, 5;−] 3, 2, 1.414, 02

J5 14 4 [7, 7,−5, 3, 5, 7,−3]2 3, 1.932, 1.412, 0.522

J6 16 4 [7,−5, 3,−5;−]2 3, 22, 1.732, 1, 04

J7 16 4 [−5, 7,−5, 7,−5, 7, 3, 7;−] 3, 2, 1.732, 1.412 , 1, 02

J8 18 4 [5, 7,−5, 7, 9,−5, 5, 7,−7;−] 3, 2, 1.734, 12, 02

J9 18 4 [5,−5]9 3, 1.972, 1.732, 1.292, 0.682

J10 20 5 [5,−5, 9,−9]5 3, 24, 15

J11 20 5 [5,−9,−7, 7,−7,−5, 5,−9, 5, 7;−] 3, 24, 15

J12 20 5 [−5, 9,−9, 5,−5, 7,−9, 7,−5, 9;−] 3, 23, 1.732, 13, 02

J13 20 5 [5, 9,−9, 5,−9,−5,−9, 5,−5, 9;−] 3, 22, 1.882, 1.532, 1, 0.352

J14 20 5 [5, 9,−5, 9,−9,−5, 5, 9, 5, 9;−] 3, 23, 1.732, 13, 02

J15 20 4 [−9, 5,−7, 7,−7, 7,−5, 7,−9, 7;−] 3, 22, 1.882, 1.532, 1, 0.352

J16 24 4 [5,−9, 7;−]4 3, 26, 13, 04

T-Cox 30 4 [−13,−9, 7;−]5 3, 29, 010

Table 3. Bipartite cubic graphs satisfying
√
3 < λ2 ≤ 2.

6. CONCLUDING REMARKS

Recall that all r-regular graphs (r ≤ 4) with λ2 ≤ 1 are determined in [14],
and so this reference contains all graphs of Table 1 that satisfy the same spectral
property. The Clebsch graph appears in [9] as one of the 5-regular graphs with
λ2 ≤ 1.

All bipartite distance-regular graphs with
√
2 < λ2 ≤

√
3 are determined in

[15]. All of them are given in Table 2 under identifications C10, C12, I3, I4, I4, I5,

and I5. In this paper we applied a different approach to determine all such (not
only distance regular) graphs.

Note that there are no non-bipartite triangle-free regular graphs with λ2 =√
2. In fact, this equality holds only for 3 bipartite regular graphs (see Table 1).

In addition, there are 11 bipartite regular graphs with λ2 =
√
2 (Table 2), and 15

bipartite cubic graphs with λ2 = 2 (Table 3).
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The graphs I1 (Table 1), J2, and J3 (Table 3) are isomorphic to their bipar-
tite complements, while the bipartite complements of the remaining 21 bipartite
reflexive cubic graphs are also bipartite reflexive but not cubic.

Some of the graphs obtained appear in the literature. For example, I1, I2, I3
(Table 2), J10 and J16 (Table 3) are known as Franklin, Möbius-Kantor, Pappus,
Desargues, and Nauru graph, respectively.

Acknowledgements. The work is supported by Serbian Ministry of Education,
Science and Technological Development, Projects 174012 and 174033.

REFERENCES

1. H. S. M. Coxeter, R. Frucht, D. L. Powers: Zero-symmetric graphs: trivalent

graphical regular representations of groups. Academic Press. New York, 1981.
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