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Abstract

In 1993, Cao and Hong [J. Graph Theory, 17 (1993), 325–331] posed the prob-
lem of characterizing graphs whose second largest eigenvalue is less than the golden
section bound. In further considerations, the problem is extended to ‘less than or
equal to the golden section’. Several results giving partial characterizations ap-
peared in the proceeding years, and what have remained are the most complicated
cases. These cases are treated very sporadically in the period of the next 25 years.
In this paper, we give a positive resolution to the problem for graphs containing a
large clique. Actually, we characterize graphs whose second largest eigenvalue does
not exceed the golden section bound and whose clique number is at least 54. If a
graph has a pendant vertex, the result is improved to clique number at least 8.

Mathematics Subject Classifications: 05C50, 05C22

1 Introduction

In this paper we deal with finite undirected graphs without loops or multiple edges. For
such a graph G, we denote its vertex set by V (G) and edge set by E(G). The number of
vertices is denoted by n and called the order of G. We use H ⊂ G to designate that H
is an induced subgraph of G. In particular, if H is a complete graph, then it is called a
clique (of G). The clique number ω (or ω(G)) is the order of a maximum clique of G.

A vertex of degree 1 is referred to as a pendant vertex. As usual, Kn, Pn and Cn denote
the complete graph, the path and the cycle of order n, respectively. Also, Ks,t denotes
the complete bipartite graph with s vertices in one colour class and t vertices in the other
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colour class. We write Ws,t for the graph obtained by taking the complete graph Ks with
vertex set {u1, u2, . . . , us} and t (t 6 s) isolated vertices v1, v2, . . . , vt, and inserting the
edges u1v1, u2v2, . . . , utvt. For a graph G, sG and G denote the disjoint union of s copies
of G and the complementary graph of G, respectively. For G and H, G∨H denotes their
join, i.e., the graph obtained by inserting an edge between every vertex of G and every
vertex of H. If F is an induced subgraph of G, then H ∨ (F |G) is the graph obtained
by inserting an edge between every vertex of H and every vertex of F (This operation
reduces to the join when F ∼= G.)

We write λ2 to denote the second largest eigenvalue of G, that is the second largest
eigenvalue of the standard {0, 1}-adjacency matrix of G. Graphs whose second largest
eigenvalue is comparatively small have received a great deal of attention in the last five
decades. Many results obtained before 2015 are surveyed in [24], whereas for the recent
progress we refer the reader to [5, 16, 17, 26]. In particular, graphs with λ2 6 1

3
are known

for a long period, and graphs with λ2 6 1
2

have been determined in 2023 [26]. Since every
rational eigenvalue is an integer, λ2 never attains the previous bounds. Graphs with λ2 6 1
are extensively studied, and some notable references are [7, 10, 20, 21]. According to [17],
to conclude determination of these graphs it remains to identify those which contain an
induced subgraph isomorphic to K4 − e, that is the graph obtained by removing an edge
from the complete graph of order 4.

Another upper bound for λ2, located between the previous two, has been studied, again
with the absence of a complete characterization of the corresponding graphs. This is the
so-called golden section (also known as the golden ratio)

√
5−1
2
≈ 0.618. This constant

appears in the spectrum of many graphs, say it is the second largest eigenvalue of the
4-vertex path. In 1993, Cao and Hong formulated the following problem.

Problem 1. [4] Characterize graphs with 1
3
< λ2 <

√
5−1
2

.

Henceforth, we make the reading easier by denoting σ =
√
5−1
2

and abbreviating a
connected graph with λ2 6 σ to a σ-graph. This terminology is consistent with [2, 7, 9, 23].
Before this paper, it has been shown that every σ-graph is either complete multipartite,
or an induced subgraph of the 5-vertex cycle, or contains a triangle and its diameter is
at most 3 [8]. Further characterizations of those with a triangle are given in the same
reference. Considering the existing results on σ-graphs, it is worth mentioning that Simić
has proved in [23] that the set of minimal forbidden induced subgraphs for λ2 < σ is
finite. A partial list of these subgraphs can be found in [9]. The same result is extended
to σ-graphs by Cvetković and Simić in [8], again with the absence of the complete list of
the corresponding forbidden subgraphs.

All former results concerning σ-graphs were noteworthy and, in contrast to them, a
complete characterization of these graphs requires intensive technical considerations and
a multiple case analysis. In the light of the aforementioned unresolved case for λ2 6 1,
a possible method to deal with the golden section bound is to determine σ-graphs that
do not contain K4 − e as an induced subgraph (they are already identified among graphs
with λ2 6 1), and consider the remaining ones (with an induced subgraph isomorphic to
K4 − e). However, it occurs that the existence of such a subgraph is very common for
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graphs with small λ2, and this approach would be rather difficult. In this contribution,
our attention is focused on σ-graphs with a comparatively large clique number. This
is motivated by the following empirical observations. By considering connected graphs
whose second largest eigenvalue is bounded by some of the aforementioned constants, one
may deduce that they have smaller diameter (see [23]), and consequently more ‘round’
shape followed by higher clique number and girth (length of a shortest cycle). On the
contrary, for large values of λ2, the graphs have larger diameter, and consequently more
‘path-like’ shape followed by smaller clique number and girth. An explanation in the case
of regular graphs is offered by Cvetković [6], and Alon and Chung [1]. The latter result is
the famous Expander Mixing Lemma that can also be found in [24], and whose concept
appeared in the work of Haemers [14]. By observing that σ-graphs do not deviate from
the previous structural description, one may see that a restriction on the clique number
arises in a natural way.

To formulate our main result, we set Da,b
∼= K1 ∨ (Ka ∪Kb), for b > a > 2, and

D = {Hs ∨ (Ks|Ws,s) : s > 1}, where Hs = s
(
(K1 ∨ C5) ∪W 3,3 ∪D2,3 ∪Ws,s

)
.

The result reads as follows.

Theorem 2. Let G be a connected graph that satisfies either

(i) ω(G) > 54 or

(ii) ω(G) > 8 and G has a pendant vertex.

Then λ2(G) 6
√
5−1
2

holds if and only if G is an induced subgraph of some graph of

D ∪ {D2,4 ∨K52}.

Since ω(D2,4 ∨K52) = 54, the previous theorem implies the following result.

Corollary 3. For a connected graph G with ω(G) > 55, λ2(G) 6
√
5−1
2

holds if and only
if G is an induced subgraph of some graph of D.

The connectedness of G is not a significant obstacle, since a disconnected graph with
λ2 6 σ is the disjoint union of a connected one and a set of isolated vertices, provided by
λ2(2K2) > σ. The proof of Theorem 2 is based on two statements, each belonging to a
wider context. The first of them is the forthcoming Theorem 5 concerning the determinant
of a particular complex matrix and an application giving the upper bound for its second
largest eigenvalue under certain additional assumptions. The second one (Theorem 7)
establishes all connected graphs with λ2 6 σ under the caveat that their clique number
is at least 8 and they do not contain particular induced subgraphs.

Regarding a comparison with recently obtained graphs satisfying λ2 <
1
2
, it is worth

mentioning that these graphs are classified into the 13 structured types and each of them
contains graphs obtained by combining unions and joins of complete graphs, or complete
bipartite graphs, or their complements. Of course, all of them with large clique are
covered by Theorem 2. Concerning the difference, i.e., graphs characterized by the same
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theorem but not belonging to any class with λ2 < 1
2
, it occurs that such graphs are

obtained easily. For instance, λ2(D2,4 ∨ Kt) >
1
2

holds whenever t > 3, and there is
a similar conclusion for graphs of D. The method applied in [26] is elegant and relies
on facts that the complement of a non-trivial graph with λ2 >

1
2

must be disconnected
with each component containing a dominating vertex. This approach is not applicable
in our study, since in general neither of the previous restrictions holds for a complement
of a σ-graph. However, we also deal with complementary graphs having some structural
restrictions, where these restrictions refer to the discussion on the existence of prescribed
components called special components (see Section 4). The limits on clique numbers given
in Theorem 2 arise from the existence of these components, which can be seen from the
proof of the necessity in this theorem. Another comparison with [26] is given in the last
section of this paper.

Our contribution echoes the results of [23] since this reference classifies graphs with
a relaxed restriction λ2 < σ into the nine structured types, and a simple analysis on
them shows that the clique number of these graphs is 6 54, unless they are complete
multipartite. Accordingly, Theorem 2(i) starts with a boundary case ω = 54 and continues
with ω > 54.

We proceed with other related results. A cograph is a graph which does not contain P4

as an induced subgraph. There is no inclusion between the class of σ-graphs and the class
of cographs; for example, a σ-graph of diameter 3 is not a cograph, whereas a cograph that
contains 2K2 as an induced subgraph is not a σ-graph. However, there is an interplay
between these classes, and in some investigations they are considered simultaneously.
In particular, this occurs in the context of the polynomial reconstruction [2], spectral
characterization [4, 11], control theory [13] or the rank of graphs [22].

There are results concerning relationships between the clique number and some other
eigenvalues of a graph. We know from Nikiforov’s [18, 19] that

λ1 6

√
ω − 1

ω
2m <

ω − 1

ω
and λn < −

2ω−1mω

ωn2ω−1 ,

where λ1 is the largest eigenvalue, λn is the least eigenvalue, n is the order and m is the
number of edges; the latter inequality for λ1 is the classical Wilf’s inequality [25]. Since
the clique number of graphs of Theorem 2 can be computed explicitly (for D, in terms
of s), the previous inequalities give upper bounds on λ1 and λn for the obtained σ-graphs.
More relationships between λ1 and ω are obtained by Bollobás and Nikiforov [3]. Another
interplay between λ1, λn and ω is obtained by Gregory et al. [12]. Each of the foregoing
inequalities can also be found in [24].

The remaining sections are organized in the following way. Section 2 is preparatory.
In Section 3, we prove the sufficiency in Theorem 2. The necessity, which is the main con-
tribution of this paper, is proved in Section 4. Some concluding remarks and comparisons
are given in Section 5.
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2 Preliminaries

This is a short section collecting all what is needed. We use I, J, O, j and 0 to denote the
identity matrix, the all-1 matrix, the all-0 matrix, the all-1 vector and the all-0 vector,
respectively. The size may be given in the subscript.

We write N(v) and d(v) for the neighbourhood and the degree of a vertex v of a
graph G. For any subset U of V (G) and vertex v 6∈ U , we denote by NU(v) = NG(v)∩U
and NU [v] = NU(v)∪ {v} the open and the closed neighbourhood of v in U , respectively.
To simplify, for an induced subgraph H of G, NV (H)(v) is abbreviated to NH(v). The
graph induced by the vertex set U is denoted by G[U ], and G\U denotes the graph
obtained by removing the vertices of U . A component of a graph is a maximal connected
induced subgraph.

In the entire paper, we assume that the eigenvalues of a graph G are indexed non-
increasingly as λ1 > λ2 > · · · > λn. The corresponding characteristic polynomial is
denoted by Φ(G). To avoid an unnecessary quoting of the order n, we also use λmin to
denote the least eigenvalue. The same notation is used for every real symmetric matrix.

We will use the next lemma.

Lemma 4 ([15, p. 20]). The following statements hold true:

(i) Let

S =

(
M N
P Q

)
be a square block matrix, such that M is invertible. Then det(S) = det(M) det(Q−
PM−1N);

(ii) If A is an n × n matrix and x and y are n × 1 vectors, then det(A + xyᵀ) =
det(A) + yᵀ adj(A)x, where adj(A) stands for the adjugate matrix.

Item (i) is known as the Schur’s formula. The entire lemma holds for complex matrices
and vectors.

3 Sufficiency

It follows from the Interlacing Theorem that the property λ2 6 σ is hereditary in the sense
that if it holds for a graph G then it holds for every induced subgraph of G. Therefore,
to prove the sufficiency in Theorem 2, it is enough to prove that the graphs of D and
D2,4 ∨K52 are σ-graphs.

Observe that Lemma 4(ii), implies

det(A) = det(A+ xyᵀ − xyᵀ) = det(A+ xyᵀ)− yᵀ adj(A+ xyᵀ)x, (1)

where, of course, x,y and A are of feasible size. We proceed with the following theorem.
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Theorem 5. Let

A =

(
A1 αβᵀ

βαᵀ A2

)
,

where α and β are real column vectors. Then

det(λI − A) = det(λI − A1 + ααᵀ) det(λI − A2) + det(λI − A1) det(λI − A2 + ββᵀ)

− det(λI − A1 + ααᵀ) det(λI − A2 + ββᵀ). (2)

Moreover, if A is real, non-negative and symmetric, τ is a real number and

min {λmin(ααᵀ − I − A1), λmin(ββᵀ − I − A2)} > −1− τ,

then λ2(A) 6 τ, with equality when λ1(A) > τ and λmin(ααᵀ − I −A1) = λmin(ββᵀ − I −
A2) = −1− τ .

Proof. We set rᵀ = (αᵀ, βᵀ) and

B =

(
λI − A1 + ααᵀ O

O λI − A2 + ββᵀ

)
.

If B is invertible, then by (1) and Lemma 4, we have

det(λI − A) = det(B − rrᵀ) = det(B)− rᵀ adj(B)r

= det(B)− rᵀ det(B) B−1r

= det(λI − A1 + ααᵀ) det(λI − A2 + ββᵀ)

− αᵀ adj(λI − A1 + ααᵀ)α det(λI − A2 + ββᵀ)

− det(λI − A1 + ααᵀ)βᵀ adj(λI − A2 + ββᵀ)β

= det(λI − A1 + ααᵀ) det(λI − A2 + ββᵀ)

− (det(λI − A1 + ααᵀ)− det(λI − A1)) det(λI − A2 + ββᵀ)

− det(λI − A1 + ααᵀ)(det(λI − A2 + ββᵀ)− det(λI − A2))

= det(λI − A1) det(λI − A2 + ββᵀ) + det(λI − A1 + ααᵀ) det(λI − A2)

− det(λI − A1 + ααᵀ) det(λI − A2 + ββᵀ).

.

Note that there are infinite choices for λ such that B is invertible and both sides the last
equality are univariate polynomials in λ. Thus, the formula (2) holds.

Now, set λ = τ + ε, with ε > 0. Since min{λmin(ααᵀ− I −A1), λmin(ββᵀ− I −A2)} >
−1−τ , it follows that B is positive definite. Therefore, there exists an invertible matrix P1

such that P1BP
ᵀ
1 = I. Let C = P1rr

ᵀP ᵀ
1 . Since the rank of C is equal to the rank of rrᵀ,

it is not larger than one. This implies the existence of another orthogonal matrix P2 such
that P2CP

ᵀ
2 = diag(µ, 0, . . . , 0). Let P = P2P1. Then

P (λI − A)P ᵀ = PBP ᵀ − PrrᵀP ᵀ = P2(P1BP
ᵀ
1 )P ᵀ

2 − P2CP
ᵀ
2 = I − diag(µ, 0, . . . , 0).

Since λI−A and I−diag(µ, 0, . . . , 0) are congruent, they have the same inertia indices.
Hence, λn−1(λI − A) = λ− λ2(A) = τ + ε− λ2(A) > 0, where n is the order of A. From
ε > 0, we have λ2(A) 6 τ .
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It remains to consider the equality case. For λmin(ααᵀ−I−A1) = λmin(ββᵀ−I−A2) =
−1 − τ , it holds det(τI − A1 + ααᵀ) = det(τI − A2 + ββᵀ) = 0. From (2), we have
det(τI−A) = 0 and λ2(A) = τ , since by the statement assumption there is λ1(A) > τ .

We prove the following consequence.

Corollary 6 (Sufficiency in Theorem 2). Every graph of D∪{D2,4∨K52} is a σ-graph.

Proof. First, the inequality λ2(D2,4 ∨K52) 6 σ is confirmed by direct computation. Let
G ∈ D, i.e., G ∼= Hs ∨ (Ks|Ws,s), for s > 1.

Suppose that the order of Hs is k. By taking α = jk and βᵀ = (jᵀs ,0
ᵀ
s), we arrive at

A(G) =

(
A(Hs) αβᵀ

βαᵀ A(Ws,s)

)
=

A(Hs) Jk×s O
Js×k Js − Is Is
O Is O

 .

Since

det
(
λI −

(
ββᵀ − I − A(Ws,s)

))
= det

(
λIs −Is
−Is (λ+ 1)Is

)
= (λ2 + λ− 1)s,

by employing Lemma 4(i), we obtain λmin(ββᵀ − I − A(Ws,s)) = −1− σ.
Note that Φ(K1∨C5) = (λ2+λ−1)2(λ2−2λ−5), Φ(W 3,3) = (λ2+λ−1)2(λ2−2λ−4),

Φ(D2,3) = (λ+ 1)3(λ3 − 3λ2 − 3λ+ 7) and

Φ(Ws,s) = det

(
(λ+ 1)Is − Js −Is

−Is λIs

)
= det(λIs) det

[
(λ+ 1)Is − Js − λ−1Is

]
= (λ2 + λ− 1)s−1 (λ2 − (s− 1)λ− 1),

where the last equality holds since the eigenvalues of Js are s and s−1 copies of 0. Since the
least root of these four polynomials is not less than −1−σ and Hs = s

(
(K1∨C5)∪W 3,3∪

D2,3 ∪Ws,s

)
, we deduce λmin(A(Hs)) > −1 − σ. Combining λmin(ββᵀ − I − A(Ws,s)) =

−1− σ with
λmin(ααᵀ − I − A(Hs)) = λmin(A(Hs)) > −1− σ,

we obtain λ2(G) 6 σ by Theorem 5.

4 Necessity

Let R1, R2, . . . , R7 be the graphs illustrated in Figure 1. One can easily check that none
of them is a σ-graph. In other words, these graphs do not appear as induced subgraphs
of σ-graphs, or they are forbidden induced subgraphs for σ-graphs.

One more term is needed. If Da,b, with either 3 = a 6 b 6 5 or a = 2 < 4 6 b 6 18, is
a component of G, then we say that Da,b is a special component of G.

The following theorem features as another meaningful result of this paper. It plays a
crucial role in the proof of Theorem 2.
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R1 R2 R3 R4

R5

R6
R7

Figure 1: Forbidden induced subgraphs for σ-graphs.

Theorem 7. Let G be a connected graph. If G contains no special component and
ω(G) > 8, then λ2(G) 6 σ if and only if either

(i) G is an induced subgraph of D, or

(ii) G is an induced subgraph of some graph of {D2,27 ∪ 6K1, D2,21 ∪W6,6, D2,21 ∪W 3,3 ∪
3K1, D2,21 ∪ C5 ∪ 4K1, D2,19 ∪K4 ∪ 5K1}, or

(iii) G ⊂ D4,4 ∪H, for H ∈ {W 3,3 ∪ 3K1, C5 ∪ 4K1,W6,6, K4 ∪ 5K1}, or

(iv) G ⊂ D3,6 ∪H, for H ∈ {W 3,3 ∪ 3K1, C5 ∪ 4K1,W6,6}.

The proof is based on a sequence of facts and lemmas. In what follows, G denotes
a graph of the previous theorem. We always suppose that ω(G) = q and Kq is a fixed
maximum clique of G, with V (Kq) = {w1, w2, . . . , wq}. We also denote by V1 (resp. V2)
the set of vertices of V (G) \ V (Kq), such that each of them is adjacent to exactly one
(more than one) vertex of Kq. In the first four facts, we do not need the assumption
q > 8 (as formulated in the previous theorem); this assumption will be imposed after
Lemma 13.

The first fact tells us that V (G) = V (Kq) ∪ V1 ∪ V2, for q > 3.

Fact 8. If q > 3, then for every x ∈ V (G) \ V (Kq), x is adjacent to at least one vertex
of Kq.

Proof. For a contradiction, assume that G contains some vertex, which is not a neighbour
of any vertex of Kq. Since G is connected, we can choose a vertex x of G such that x is
not adjacent to any vertex of Kq, xy ∈ E(G) for y ∈ V (G) \ V (Kq), and y is adjacent to
some vertices of Kq. Since 2K2 ⊂ G when |NKq(y)| = 1 and R1 ⊂ G when |NKq(y)| > 2,
we have λ2(G) > σ, which is a contradiction.
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We proceed with the following, more or less simple, facts. They lead to the forthcoming
Lemma 13.

Fact 9. Let k = |NKq(x)|, for x ∈ V2. We have 1 6 q − k 6 3, where q = k + 3 implies
q ∈ {5, 6}. In other words, if q > 7, then q − 2 6 k 6 q − 1.

Proof. Since ω(G) = q, it follows that k 6 q − 1. Let H = K1 ∨ (Kk|Kq). Since H ⊂ G
and x ∈ V2, we have λ2(H) > λ2(K1 ∨ (K2|K6)) > σ, whenever 2 6 k 6 q− 4. Therefore,
q 6 k+ 3. If q = k+ 3 > 7, again λ2(H) > λ2(K1 ∨ (K4|K7)) > σ leads to the impossible
scenario. Hence, q ∈ {5, 6}, as k = 1 is eliminated by definition of V2.

Fact 10. Let x1, x2 ∈ V (G) \ V (Kq) where xi is adjacent to exactly ki vertices of Kq, for
1 6 i 6 2. If q > 2 + k1 + k2, then x1 is not adjacent to x2.

Proof. If x1x2 ∈ E(G), then 2K2 ⊂ G (as q > 2 + k1 + k2), which is not in line with
λ2(G) 6 σ.

We recall the reader that the independent set is a vertex subset that do not contain
adjacent vertices. In other words, it is the complement of a clique.

Fact 11. If q > 4, then each vertex of Kq is adjacent to at most one vertex of V1, and V1
is an independent set of G.

Proof. Assume for a contradiction that there exists a vertex x ∈ V (Kq) adjacent to at
least two vertices of V1. In this case, either 2K2 ⊂ G or R2 ⊂ G, which contradicts
λ2(G) 6 σ. Combining this with Fact 10, we arrive at the desired result.

Fact 12. If q > 8 and y ∈ V1 with NKq(y) = {z}, then z is adjacent to every vertex of V2
and y is a pendant vertex of G.

Proof. Suppose that x ∈ V2. By Fact 9, we have q − 2 6 |NKq(x)| 6 q − 1.

If z 6∈ NKq(x), then xy ∈ E(G), as R1 6⊂ G. Thus, we have K2 ∪K1,7 ⊂ G for
|NKq(x)| = q − 1 > 7 or R4 ⊂ G for |NKq(x)| = q − 2, contradicting λ2(G) 6 σ.
Therefore, z ∈ NKq(x), which implies that z is adjacent to every vertex of V2.

Since R1 6⊂ G and q − |NKq(x)| > 1 with q > 8, we have xy 6∈ E(G). Now, Facts 8
and 11 imply that y is a pendant vertex of G.

At this point we single out one possibility for V2.

Lemma 13. If |V2| 6 1 and q > 8, then G is an induced subgraph of Wq,q or (K1 ∪K2)∨
(Kq−1|Wq−1,q−1). Consequently, G is an induced subgraph of some graph of D.

Proof. If |V2| = 0, then G ⊂ Wq,q by Fact 11. Let V2 = {x}. By Fact 9, we have q − 2 6
|NKq(x)| 6 q−1. By Fact 12, G is an induced subgraph of (K1∪K2)∨ (Kq−1|Wq−1,q−1) ⊂
(K1 ∨ C5) ∨ (Kq−1|Wq−1,q−1).

In any case, G is an induced subgraph of some graph of D, as follows by definition of
the latter class.
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Henceforth, we always suppose that V2 contains at least two vertices and that q > 8
holds. Further, by Fact 9, we have q−2 6 |NKq(x)| 6 q−1, for every x ∈ V2. Accordingly,
we set

Sj =
{
x : x ∈ V2, |NKq(x)| = j

}
, for j ∈ {q − 2, q − 1}.

For fixed vertices w1, w2 of V (Kq), we define

Xw1,w2 = {x : x ∈ Sq−2, w1 /∈ NKq(x) and w2 /∈ NKq(x)}

and
Yw = {x : x ∈ Sq−1, w /∈ NKq(x)}.

Observe that Yw is an independent set of G, for every w ∈ V (Kq), as q = ω(G).
We establish some structural characterizations of G. Facts 14–18 deal with Xw,w′

and Yw.

Fact 14. If w1, w2 are distinct vertices of V (Kq) with z1 ∈ Yw1 and z2 ∈ Yw2, then
NXw1,w2

(z1) = NXw1,w2
(z2). Moreover, if z1z2 ∈ E(G), then NXw1,w2

(z1) = NXw1,w2
(z2) = ∅.

Proof. By the symmetry, we may suppose that u ∈ Xw1,w2 with z1u ∈ E(G) and z2u 6∈
E(G). Then either G[u, z1, z2, w1] ∼= 2K2 ⊂ G for z1z2 6∈ E(G) or G[u, z1, z2, w1, w2] ∼=
R3 ⊂ G for z1z2 ∈ E(G). Thus, NXw1,w2

(z1) = NXw1,w2
(z2).

Next, if z1z2 ∈ E(G) and u ∈ NXw1,w2
(z1) = NXw1,w2

(z2) 6= ∅, thenG[u, z1, z2, w1, w2] ∼=
R4. Hence, NXw1,w2

(z1) = NXw1,w2
(z2)= ∅.

Fact 15. If w1, w2 are distinct vertices of V (Kq) with max{|Yw1|, |Yw2|} > 2, then every
vertex of Yw1 is adjacent to every vertex of Yw2, and there is no edge between T and Xw1,w2,
where T = Yw1 ∪ Yw2.

Proof. We may suppose that |Yw1| > |Yw2 | > 0 with z1, z2 ∈ Yw1 . Recall that Yw1 and Yw2

are independent sets of G. If z3 ∈ Yw2 and either z1z3 6∈ E(G) or z2z3 6∈ E(G), then
G[w1, w2, z1, z2, z3] ∈ {R3, R5}. Hence, every vertex of Yw1 is adjacent to every vertex
of Yw2 .

Suppose that u ∈ Xw1,w2 . If {z1u, z2u}∩E(G) 6= ∅, then G[w1, w2, z1, z2, u] ∈ {R3, R5}.
If z3 ∈ Yw2 6= ∅ and z3u ∈ E(G), then G[w1, w2, z1, z3, u] ∼= R3. Hence, there is no edge
between T and Xw1,w2 .

Fact 16. For any pair of vertices w1, w2 ∈ V (Kq), Xw1,w2 is an independent set of G and
|Xw1,w2| 6 2. Moreover, if |Xw1,w2| = 2 and z ∈ Yw1 ∪ Yw2, then |N(z) ∩Xw1,w2| = 1.

Proof. Since 2K2 6⊂ G, Xw1,w2 is an independent set of G. Since q > 8 and K3 ∨ (3K1 ∪
K2) 6⊂ G, we have |Xw1,w2| 6 2. Next, suppose that |Xw1,w2| = 2. SinceK3∨(2K1∪W2,1) 6⊂
G, we also have |N(z) ∩Xw1,w2| > 1. On the other hand, we have |N(z) ∩Xw1,w2| 6 1 as
R5 6⊂ G. Thus, |N(z) ∩Xw1,w2| = 1.

From Facts 15 and 16, we immediately obtain the following one.
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Fact 17. If w1, w2 are distinct vertices of V (Kq) with max{|Yw1 |, |Yw2|} > 2, then we have
|Xw1,w2| 6 1.

Fact 18. Let w1, w2, w3 be distinct vertices of V (Kq) and zj ∈ Ywj
for j ∈ {1, 2, 3}. If

z1z2 ∈ E(G), then |N(z3) ∩ {z1, z2}| > 1.

Proof. If |N(z3) ∩ {z1, z2}| = 0, then G[z1, z2, z3, w2, w3] ∼= R1. Therefore, we have
|N(z3) ∩ {z1, z2}| > 1.

Now, we include sets Sj (defined above).

Fact 19. If x, y ∈ Sq−2, then q − 4 6 |NKq(x) ∩NKq(y)| 6 q − 2, along with xy 6∈ E(G)
for q − 3 6 |NKq(x) ∩NKq(y)| 6 q − 2 and xy ∈ E(G) for |NKq(x) ∩NKq(y)| = q − 4.

Proof. Under the given assumptions, we have q − 4 6 |NKq(x) ∩NKq(y)| 6 q − 2.
If |NKq(x)∩NKq(y)| = q−2, then xy 6∈ E(G), as 2K2 6⊂ G. If |NKq(x)∩NKq(y)| = q−3,

then xy 6∈ E(G), as R4 6⊂ G. If |NKq(x)∩NKq(y)| = q−4, then xy ∈ E(G), as R1 6⊂ G.

Fact 20. If x ∈ Sq−2 and y ∈ Sq−1, then q − 3 6 |NKq(x) ∩ NKq(y)| 6 q − 2, where
|NKq(x) ∩NKq(y)| = q − 3 implies xy ∈ E(G).

Proof. Since x ∈ Sq−2 and y ∈ Sq−1, we have q − 3 6 |NKq(x) ∩ NKq(y)| 6 q − 2. If
|NKq(x) ∩NKq(y)| = q − 3, then xy ∈ E(G), as R1 6⊂ G.

Fact 21. If x, y ∈ Sq−1, then q−2 6 |NKq(x)∩NKq(y)| 6 q−1, where |NKq(x)∩NKq(y)| =
q − 1 implies xy 6∈ E(G).

Proof. We have q − 2 6 |NKq(x) ∩ NKq(y)| 6 q − 1. If |NKq(x) ∩ NKq(y)| = q − 1, then
xy 6∈ E(G), as q = ω(G).

In Facts 22–24, we fix some vertices of Kq and consider the interplay between Xw1,w2s
and Yw1s.

Fact 22. Let w1, w2, w3 be distinct vertices of Kq. Then:

(i) |Xw1,w2 ∪Xw2,w3| 6 2;

(ii) If min{|Yw1 |, |Xw2,w3|} > 1, then Xw1,w2 = ∅ and every vertex of Yw1 is adjacent to
every vertex of Yw2;

(iii) if x ∈ Xw1,w2, y ∈ Xw2,w3 and z ∈ Yw2, then |N(z) ∩ {x, y}| ∈ {0, 2}.
Proof. (i): By Facts 16 and 19, we have that Xw1,w2 ∪Xw2,w3 is an independent set of G,
along with max{|Xw1,w2|, |Xw2,w3|} 6 2. If z1, z2, z3 are distinct vertices of Xw1,w2∪Xw2,w3 ,
then G[z1, z2, z3, w1, w3] is R5. Hence, |Xw1,w2 ∪Xw2,w3| 6 2.

(ii): Let x ∈ Yw1 and y ∈ Xw2,w3 . Assume that z ∈ Xw1,w2 . By Facts 19 and 20, we
have xy ∈ E(G) and yz 6∈ E(G). This implies G[x, y, z, w1, w3] ∼= R3 for xz 6∈ E(G) and
G[x, y, z, w1, w3] ∼= R4 for xz ∈ E(G). Hence, Xw1,w2 = ∅. Next, suppose that z ∈ Yw2 .
If xz /∈ E(G), we obtain G[x, y, z, w1, w2] ∼= R3 for yz /∈ E(G) and G[x, y, z, w1, w2] ∼= R4

for yz ∈ E(G). Hence, xz ∈ E(G).
(iii): From x ∈ Xw1,w2 and y ∈ Xw2,w3 , we have xy 6∈ E(G) by Fact 19. If |N(z) ∩

{x, y}| = 1, then G[x, y, z, w1, w3] ∼= R1. Hence, |N(z) ∩ {x, y}| ∈ {0, 2}.
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Fact 23. min{|Xw1,w2|, |Xw3,w4|, |Xw1,w3|} = 0 holds for distinct vertices w1, w2, w3, w4

of Kq.

Proof. Assume that x1 ∈ Yw1,w2 , y1 ∈ Xw3,w4 and y2 ∈ Xw1,w3 . By Fact 19, we have
x1y1 ∈ E(G) and y2 6∈ NG(x1) ∪ NG(y1). This implies G[w2, w3, x1, y1, y2] ∼= R3, and we
are done.

Fact 24. If min{|Yw1|, |Yw2|} > 1 with |Yw1 |+ |Yw2| > 4 and |Xw1,w2| > 1, then V1 = ∅.

Proof. By Fact 15, every vertex of Yw1 is adjacent to every vertex of Yw2 , and every
vertex of Xw1,w2 is not adjacent to any vertex of Yw1 ∪ Yw2 . Assume that z ∈ V1 with
NKq(z) = {w3}. By employing Fact 12, we deduce that w3 6∈ {w1, w2} and R6 or R7 is an
induced subgraph of G[U ] with U = {w1, w2, w3, z}∪Yw1∪Yw2∪Xw1,w2 . This contradiction
leads to V1 = ∅.

We recall from Section 2 that NY [x] denotes the closed neighbourhood of x in Y . Let

NY (X) = {y : y ∈ Y and |NX(y)| > 0} and NY [X] = NY (X) ∪X.

We also set ÑY (X) = {y : y ∈ Y and NX(y) 6= X}.
By Facts 11 and 12, every vertex of V (G) \ NKq [V1] is adjacent to every vertex

of NKq(V1), which implies that G ∼= G0∨(Kh|Wh,h), where G0 = G\NKq [V1] and |V1| = h.
In the remainder of this section, G0 is always as in the previous sentence. The next fact
gives the structure of components of G0.

Fact 25. If H is a component of G0, then either H ∼= Wt,j with 0 6 j 6 t and t > 1, or
H ∼= Da,b with b > a > 2, or H ∈ {K1 ∨ P3, K1 ∨ P4, K1 ∨ C5, C5,W 3,3}. Moreover, if
H ∼= Da,b with a+ b > 6, then V1 = ∅ with G ∼= G0.

Proof. To avoid ambiguity, when we say that two vertices are adjacent, we always mean
they are adjacent in G0. When V (H)∩V2 = ∅, we have V (H) ⊆ V (Kq). Thus H ∼= K1

∼=
W1,0. Next, we may suppose that V (H) ∩ V2 6= ∅. Since V2 = Sq−1 ∪ Sq−2 by Fact 9, we
need to consider the following three cases:

C ase 1: V (H) ∩ Sq−2 = ∅.
This implies that V (H) ∩ Sq−1 6= ∅. Let x1 ∈ V (H) ∩ Sq−1. Then there exists a unique
vertex wk1 ∈ V (Kq), such that x1wk1 ∈ E(H). Since Ywk1

is an independent set of G, we
have Ywk1

∪ {wk1} ⊆ V (H).
If V (H) = Ywk1

∪ {wk1}, then H ∼= Kt
∼= Wt,0, where t = |Ywk1

| + 1 > 2. Next, we
suppose that V (H) 6= Ywk1

∪ {wk1}.
If |Ywk1

| > 2, then every vertex of the independent set Ywk1
is adjacent to every vertex

of Sq−1 \ Ywk1
by Fact 15. This implies V (H) = Ywk1

∪ {wk1}, which is a contradiction.
Hence, Ywk1

= {x1}.
Since V (H) 6= Ywk1

∪ {wk1}, x1 is not adjacent to some vertex y1 ∈ Ywh
, where

h 6= k1. By Fact 15, we have |Ywh
| = 1. Let S be a maximum independent set of

G0[Sq−1] containing x1. Then, |S| > 2. By the maximality of |S| and Fact 18, we
conclude that every vertex of S ′ = Sq−1 \ S (if not empty) is adjacent to every vertex
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of S. Since |Ywk1
| = 1 holds for every w1 ∈ ÑKq(S) by Fact 15, we have Ywk1

⊂ S.

Therefore, every vertex of S ′ = Sq−1 \ S is adjacent to every vertex of ÑKq(S). This

implies V (H) = S ∪ ÑKq(S), and so H ∼= Wt,t, where t = |S| > 2.

C ase 2: V (H) ∩ Sq−1 = ∅.
Let x1 ∈ V (H) ∩ Sq−2. Then there exists a unique pair {wk1 , wl1} ⊂ V (Kq) such that
x1 ∈ Xwk1

,wl1
, that is, x1wk1 , x1wl1 ∈ E(H). If V (H) = Xwk1

,wl1
∪ {wk1 , wl1}, then H

is isomorphic to W2,1 or K1 ∨ P3, as Xwk1
,wl1

is an independent set and |Xwk1
,wl1
| 6 2

by Fact 16. Next, suppose that V (H) 6= Xwk1
,wl1
∪ {wk1 , wl1}. Since V (H) ∩ Sq−1 = ∅,

there must exist y1 ∈ Xwk2
,wl2

with {k2, l2} 6= {k1, l1} such that y1 is not adjacent to some
vertex of {wk1 , wl1} ∪Xwk1

,wl1
.

By Fact 19, we have |{k2, l2} ∩ {k1, l1}| = 1, and thus we may suppose that k1 = k2
and l2 6= l1. Now, since |{k2, l2} ∩ {k1, l1}| = 1, we have Xwk1

,wl1
= {x1}, Xwk1

,wl2
= {y1}

and x1y1 6∈ E(G) by Facts 19 and 22(i). If V (H) = {x1, y1, wk1 , wl1 , wl2}, then H ∼= W3,2.
Next, suppose that V (H) 6= {x1, y1, wk1 , wl1 , wl2}. Then there must exist z1 ∈ Xwk3

,wl3

such that z1 6∈ {x1, y1} and z1 is not adjacent to some vertex of {x1, y1, wk1 , wl1 , wl2}. We
claim that

|{k1, l1} ∩ {k3, l3}| = 1 = |{k1, l2} ∩ {k3, l3}|. (3)

Indeed, by assuming that |{k1, l1}∩{k3, l3}| = 0, on the basis of min{|Xwk1
,wl1
|, |Xwk3

,wl3
|,

|Xwk1
,wl2
|} > 1 and Fact 23, we deduce l2 6∈ {k3, l3}, and thus |{k1, l2} ∩ {k3, l3}| = 0.

Now, from Fact 19, z1 is adjacent to every vertex belonging to {x1, y1, wk1 , wl1 , wl2}, which
is impossible, and this confirms (3).

We first suppose that k1 6∈ {k3, l3}. By (3), we have {k3, l3} = {l1, l2} and thus
Xwl1

,wl2
= {z1} by Fact 22(i). We claim that V (H) = {x1, y1, z1, wk1 , wl1 , wl2}. Other-

wise, there exists z2 ∈ Xwk4
,wl4

such that z2 6∈ {x1, y1, z1} and z2 is not adjacent to some
vertex of {x1, y1, z1, wk1 , wl1 , wl2}. If z2 is adjacent to every vertex of {x1, y1, wk1 , wl1 , wl2},
then {k4, l4} ∩ {k1, l1, l2} = ∅ by Fact 19, and thus z1z2 ∈ E(G) holds by the same
fact, which contradicts the choice of z2. Thus, z2 is not adjacent to some vertex of
{x1, y1, wk1 , wl1 , wl2}. By the symmetry of z1 and z2, we have k1 ∈ {k4, l4} by (3) (replac-
ing {k3, l3} with {k4, l4}) and {k4, l4}∩{l1, l2} = ∅, as Xwl1

,wl2
= {z1} and z2 6∈ {x1, y1, z1}.

Suppose that k4 = k1. Then min{|Xwk1
,wl4
|, |Xwl1

,wl2
|, |Xwk1

,wl1
|} > 1, contradicting

Fact 23. This confirms our claim that V (H) = {x1, y1, z1, wk1 , wl1 , wl2}. By Fact 19,
{x1, y1, z1} is an independent set of G and thus H ∼= W 3,3.

Secondly, we suppose that k1 ∈ {k3, l3}. By (3), we have k3 = k1 and l3 6∈ {l1, l2}. By
Facts 19 and 22 (i), we haveXwk1

,wl3
= {z1} with x1, y1 6∈ NG(z1). Since {x1, y1, z1, wk1 , wl1 ,

wl2 , wl3} ⊆ V (H), there exists c > 3, such that c is as large as possible and {xs1 , xs2 , . . . , xsc ,
wk1 , ws1 , ws2 , . . . , wsc} ⊆ V (H), where Xwk1

,wsi
= {xsi} for 1 6 i 6 c.

Next, we show that

V (H) = {xs1 , xs2 , . . . , xsc , wk1 , ws1 , ws2 , . . . , wsc}. (4)

Otherwise, there exists z2 ∈ Xwf ,wg such that z2 6∈ {xs1 , xs2 , . . . , xsc} and z2 is not adjacent
to some vertex of {xs1 , xs2 , . . . , xsc , wk1 , ws1 , ws2 , . . . , wsc}. By Fact 19, we have |{f, g} ∩
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{k1, s1, s2, . . . , sc}| > 1. By the choice of c and z2 6∈ {xs1 , xs2 , . . . , xsc}, we have k1 6∈ {f, g}.
Suppose that f = s1 and g 6= s2, as c > 3. Thus min{|Xwk1

,ws2
|, |Xws1 ,wg |, |Xwk1

,ws1
|} > 1,

which contradicts Fact 23. Hence, (4) holds.
By Fact 19, {xs1 , xs2 , . . . , xsc} is an independent set of G, and thus H ∼= Wt,t−1 with

t = c+ 1 > 4.

C ase 3: V (H) ∩ Sq−2 6= ∅ and V (H) ∩ Sq−1 6= ∅.
We show that H contains a pair of vertices x1, y1, such that x1 ∈ Ywk1

and y1 ∈ Xwl1
,wr1

with k1 ∈ {l1, r1}. Suppose that k1 6∈ {l1, r1} holds for every pair of vertices x1 ∈ Ywk1

and y1 ∈ Xwl1
,wr1

. Take V2,1 = Sq−1∪ÑKq(Sq−1) and V2,2 = Sq−2∪ÑKq(Sq−2). By Fact 20,

every vertex of V2,1 is adjacent to every vertex of V2,2. Thus, G0[V2,1 ∪ V2,2] is disconnected,
but this contradicts V (H)∩Sq−2 6= ∅ and V (H)∩Sq−1 6= ∅. By symmetry, we may suppose
that k1 = r1, that is, x1 ∈ Ywk1

and y1 ∈ Xwk1
,wl1

. Let U = {wk1 , wl1} ∪ Ywk1
∪Xwk1

,wl1
.

We first suppose that U = V (H). If Ywk1
∪Xwk1

,wl1
is an independent set of G, then

|Xwk1
,wl1
| = 1 by Fact 16, and thus H ∼= Wt,1 with t = |Ywk1

|+ 2 > 3. If Ywk1
∪Xwk1

,wl1
is

not an independent set of G, we may suppose that x1y1 ∈ E(G), as Ywk1
and Xwk1

,wl1
are

both independent sets, and so |Ywk1
| = 1 by Fact 15. If |Xwk1

,wl1
| = 1, then H ∼= P4

∼= W2,2

(as x1y1 ∈ E(G)). If |Xwk1
,wl1
| = 2, then x1 is adjacent to exactly one vertex of Xwk1

,wl1

by Fact 16. This implies H ∼= K1 ∨ P4.
Now, we suppose that U 6= V (H). There exists z1 ∈ V (H) ∩ V2 such that z1 6∈ U

and z1 is not adjacent to some vertex of U . We claim that

either z1 ∈ Xwk1
,wl2

with l2 6= l1, or z1 ∈ Ywl1
. (5)

Since z1 ∈ V2 = Sq−1 ∪ Sq−2, we have either z1 ∈ Xwk2
,wl2

or z1 ∈ Ywl2
, for some vertices

wk2 , wl2 ∈ V (Kq).
If z1 ∈ Xwk2

,wl2
, we first show that |{k1, l1} ∩ {k2, l2}| = 1. By way of contradic-

tion and z1 6∈ Xwk1
,wl1

, assume that |{k1, l1} ∩ {k2, l2}| = 0. From Facts 19 and 20, z1
is adjacent to every vertex of {wk1 , wl1} ∪ Ywk1

∪ Xwk1
,wl1

, which is impossible. Thus,
|{k1, l1} ∩ {k2, l2}| = 1. By Facts 19 and 22(i), we have Xwk1

,wl1
= {y1}, Xwk2

,wl2
= {z1}

and y1z1 6∈ E(G). Further, from x1 ∈ Ywk1
and Fact 22(ii), we get {k1, l1} ∩ {k2, l2} = {k1}.

If z1 ∈ Ywl2
, then we show that l2 = l1. As before, assume that l2 6= l1. Since z1 6∈ Ywk1

,
it holds l2 6∈ {k1, l1}. By Fact 20, z1 is adjacent to every vertex of {wk1 , wl1} ∪Xwk1

,wl1
,

and thus we may suppose that x1z1 6∈ E(G) by the choice of z1. But this contradicts Fact
22(ii), and so l2 = l1. By the former arguments, we have either z1 ∈ Xwk1

,wl2
with l2 6= l1

or z1 ∈ Ywl1
and (5) holds. Accordingly, we distinguish the following subcases.

Subcase 3.1: z1 ∈ Xwk1
,wl2

.
Here we have Xwk1

,wl1
= {y1}, Xwk1

,wl2
= {z1} and y1z1 6∈ E(G), by Facts 19 and 22(i).

Since {y1, z1, wk1 , wl1 , wl2} ∪ Ywk1
⊆ V (H), there exists c > 2 such that c is as large

as possible and {xs1 , xs2 , . . . , xsc , wk1 , ws1 , ws2 , . . . , wsc} ∪ Ywk1
⊆ V (H), where Xwk1

,wsi
=

{xsi} for 1 6 i 6 c. Next, we show that

V (H) = {xs1 , xs2 , . . . , xsc , wk1 , ws1 , ws2 , . . . , wsc} ∪ Ywk1
. (6)
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Otherwise, there exists a vertex z2 ∈ V (H) ∩ V2 not belonging to z2 6∈ {xs1 , xs2 , . . . , xsc ,
wk1 , ws1 , ws2 , . . . , wsc} ∪ Ywk1

and non-adjacent to any vertex of {xs1 , xs2 , . . . , xsc , wk1 ,
ws1 , ws2 , . . . , wsc} ∪ Ywk1

. Without loss of generality, we may suppose that z2 is not
adjacent to some vertex of {xs1 , wk1 , ws1} ∪ Ywk1

. By (5) and the symmetry of z1 and z2,
either z2 ∈ Xwk1

,wh
with h 6= s1 or z2 ∈ Yws1

holds.
If z2 ∈ Yws1

, then min{|Yws1
|, |Xwk1

,ws2
|, |Xwk1

,ws1
|} > 1, contradicting Fact 22(ii).

Thus, we have z2 ∈ Xwk1
,wh

with h 6= s1. Since z2 6∈ {xs1 , xs2 , . . . , xsc}, we have h 6∈
{s1, s2, . . . , sc}, contrary to the choice of c. Hence, (6) holds.

From Facts 19 and 21, it holds that {xs1 , xs2 , . . . , xsc} and Ywk1
are two independent

sets of G, respectively. If {xs1 , xs2 , . . . , xsc} ∪ Ywk1
is also an independent set of G, then

H ∼= Wt,c, for t = 1 + |Ywk1
| + c > 4. Otherwise, by Facts 15 and 22(iii), we have

Ywk1
= {x1} and x1 is adjacent to every vertex of {xs1 , xs2 , . . . , xsc}. This implies H ∼=

Wt,t, where t = c+ 1 > 3.

Subcase 3.2: z1 ∈ Ywl1
.

We claim that

V (H) = {wk1 , wl1} ∪ Ywk1
∪ Ywl1

∪Xwk1
,wl1

. (7)

Otherwise, assume that there is a vertex z2 satisfying z2 ∈ V (H)∩V2 and z2 6∈ {wk1 , wl1}∪
Ywk1

∪ Ywl1
∪Xwk1

,wl1
, such that z2 is not adjacent to some vertex of {wk1 , wl1} ∪ Ywk1

∪
Ywl1
∪Xwk1

,wl1
. By the symmetry of k1 and l1, we may suppose that z2 is not adjacent to

some vertex of {wk1 , wl1} ∪ Ywk1
∪Xwk1

,wl1
. From (5) and the symmetry of z1 and z2, we

have either z2 ∈ Xwk1
,wh

with h 6= l1, or z2 ∈ Ywl1
. Moreover, by the choice of z2, we have

z2 ∈ Xwk1
,wh

, with h 6= l1. Then min{|Ywl1
|, |Xwk1

,wh
|, |Xwk1

,wl1
|} > 1, but this contradicts

Fact 22(ii). Hence, (7) is confirmed.
By symmetry, suppose that 1 6 |Ywk1

| 6 |Ywl1
|. Recall that x1 ∈ Ywk1

, z1 ∈ Ywl1
and

y1 ∈ Xwk1
,wl1

.
We first suppose that |Ywl1

| = 1, that is, Ywk1
= {x1} and Ywl1

= {z1}. If x1z1 ∈
E(G), then y1 is not adjacent to any vertex of {x1, z1} by Fact 14. By Fact 16, we have
Xwk1

,wl1
= {y1} and thus H ∼= D2,2. Otherwise, x1z1 6∈ E(G), and then, by Fact 14,

|NG(y1)∩{x1, z1}| ∈ {0, 2} holds. Fact 16 ensures that every vertex of {x1, z1} is adjacent
to the same one vertex of Xwk1

,wl1
for the case |Xwk1

,wl1
| = 2. Since |Xwk1

,wl1
| 6 2 and

Xwk1
,wl1

is an independent set of G, by employing Fact 16, we arrive at H ∈ {K1∨C5, K1∨
P4, C5}.

Next, we suppose that |Ywl1
| > 2. By Facts 15 and 17, Ywl1

is an independent set of G,
and its every vertex is adjacent to every vertex of Ywk1

. In addition, Xwk1
,wl1

= {y1} and y1
is not adjacent to any vertex of Ywl1

∪Ywk1
. This implies H ∼= Da,b, where b = |Ywl1

|+1 > 3
and a = |Ywk1

|+ 1 > 2.
Gathering the obtained conclusions, we obtain that H is as in the statement formula-

tion.
Moreover, if H ∼= Da,b with b > a > 2 and a + b > 6, by the former arguments, we

deduce that |Ywk1
| + |Ywl1

| = a + b − 2 > 4 and |Xwk1
,wl1
| = 1 6 min{|Ywk1

|, |Ywl1
|}. By

Fact 24, we have V1 = ∅, which yields G ∼= G0.
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In the next result, we consider one possibility for a component of G0; in fact, it is a
further characterization of G0.

Fact 26. If H is a non-complete component of G0 with independence number p, then
P3 ∪ (p− 2)K1 ⊂ H.

Proof. Due to Fact 25, we immediately have that the diameter of H is at most 3 and
K1,3 6⊂ H. Suppose that U = {v1, v2, . . . , vp} is a maximum independent set of H. Since
H is non-complete we have p > 2 and P3 ⊂ H. Hence, the desired conclusion holds for
p = 2. Suppose that p > 3. If the distance between v1 and v2 is equal to 2, then let
P : v1uv2 be an induced path of H. Since K1,3 6⊂ H, by taking into account that the
diameter of H does not exceed 3, we deduce that NH(vi)∩ V (P ) = ∅ holds for 3 6 i 6 p,
which implies P3 ∪ (p− 2)K1 ⊂ H.

We next suppose that the distance between v1 and v2 is at least 3. Taking into account
the diameter of H, we conclude that this distance is exactly 3. Let P : v1u1u2v2 be an
induced path of H. If NH(vi) ∩ V (P ) = ∅ holds for 3 6 i 6 p, then we have what we
need: P3 ∪ (p− 2)K1 ⊂ H. By the symmetry, we next assume that NH(v3) ∩ V (P ) 6= ∅.
Then NH(v3)∩V (P ) = {u1, u2} holds, as K1,3 6⊂ H and U is an independent set. In other
words, V (P ) ∪ {v3} induces W3,2. Since P3 ∪ K1 ⊂ W3,2 ⊂ H, we further suppose that
p > 4. If there exists a vertex of {v4, v5, . . . , vp}, say v4, such that NH(v4) ∩ V (P ) 6= ∅,
then NH(v4) ∩ V (P ) = {u1, u2}, as before. But this implies that {v1, u1, v3, v4} induces
K1,3, which is eliminated at the beginning of this proof. Hence, NH(vi)∩ V (P ) = ∅ holds
for 4 6 i 6 p, which implies W3,2 ∪ (p − 3)K1 ⊂ H. The desired result follows from
P3 ∪ (p− 2)K1 ⊂ W3,2 ∪ (p− 3)K1.

We proceed to consider the existence of Da,b in the collection of components of G0.
First, we limit the parameters a and b as follows.

Fact 27. Let Da,b be a component of G0. If b > a > 4 or b > 6 and a = 3, then either
G ⊂ D4,4 ∪ H for H ∈ {3K1 ∪ W 3,3, 4K1 ∪ C5,W6,6, 5K1 ∪ K4} or G ⊂ D3,6 ∪ H for
H ∈ {3K1 ∪W 3,3, 4K1 ∪ C5,W6,6}.

Proof. By Fact 25, we have G0
∼= G for a + b > 6. Since 6K1 ∪D4,5 and 6K1 ∪D3,7 are

not σ-graphs, we have 6K1 ∪D4,5 6⊂ G and 6K1 ∪D3,7 6⊂ G. As ω(G) > 8, for b > a > 4
or b > 6 and a = 3, we have either a = b = 4 or b = 6 and a = 3. Let F ∈ {D4,4, D3,6} be
a component of G. We shall distinguish these possibilities for F in the end of the proof;
at this moment it is sufficient to take that F is one of these graphs. Since 7K1 ∪ F 6⊂ G
and |V (F ) ∩ V (Kq)| = 2, we have q = 8.

We claim that G contains at most two non-trivial components. Otherwise, suppose
that G1, G2 are non-trivial components distinct from F . Since F ∪ 2P3 ∪ 2K1 6⊂ G,
F ∪P3∪K2∪3K1 6⊂ G and ω(G) = 8, Fact 26 implies that both G1 and G2 are complete.
Consequently, F ∪ 2K2 ∪ 4K1 ⊂ G, which contradicts λ2(G) 6 σ. Thus, G contains at
most two non-trivial components, as claimed.

Assume that G is not an induced subgraph of F ∪ H for H ∈ {3K1 ∪ W 3,3, 4K1 ∪
C5,W6,6}. Then, G contains exactly two non-trivial components, as ω(G) = 8 and F ∪

the electronic journal of combinatorics 32(2) (2025), #P2.13 16



6K1 ⊂ F ∪W6,6. Let G1 be the other non-trivial component. By the assumption, we
have G1 6∈ {W 3,3, C5,W6,6}. Since F ∪D2,2 6⊂ G and F ∪ 4K1 ∪ (K1 ∨ P3) 6⊂ G, we have
G1
∼= Wc,j for 0 6 j 6 c by Fact 25, as G1 6∈ {W 3,3, C5}.
We claim that j ∈ {0, c − 1, c}. Otherwise, there would be ω(W c,j) = j + 1 and

F ∪W3,1 ∪ 4K1 ⊂ F ∪Wc,j ∪ (5− j)K1
∼= G, as ω(G) = 8 and W3,1 ∪ (j − 1)K1 ⊂ Wc,j.

This contradicts W3,1 ∪ 4K1 ∪ F 6⊂ G. Thus, j ∈ {0, c− 1, c}, and this implies that G is
isomorphic to either F ∪Kc ∪ 5K1 for c > 2, or F ∪Wc,c−1 ∪ (6− c)K1 for 2 6 c 6 6, or
F ∪Wc,c∪ (6− c)K1 for 2 6 c 6 6. Combining this with G 6⊂ F ∪W6,6, we obtain H ∼= Kc

for c > 2.
It remains to consider F . If F ∼= D4,4, thenG ⊂ D4,4∪5K1∪K4, asD4,4∪5K1∪K5 6⊂ G.

Otherwise, we have F ∼= D3,6. Since D3,6∪5K1∪K3 6⊂ G, it holds G ⊂ D3,6∪5K1∪K2 ⊂
D3,6 ∪ 4K1 ∪ C5, which contradicts the assumption of G. This completes the proof.

Now, we set a = 2.

Fact 28. Let D2,b be a component of G0. If b > 19, then G is an induced subgraph of some
graph of {D2,27∪6K1, D2,21∪W6,6, D2,21∪W 3,3∪3K1, D2,21∪C5∪4K1, D2,19∪K4∪5K1}.

Proof. We denote H ∼= D2,b. By Fact 25, we have G0
∼= G even for b > 4. Since b > 19

and 7K1 ∪D2,14 6⊂ G, we have q = 8.
We claim that G contains at most two non-trivial components. Otherwise, suppose

that G1, G2 are two non-trivial components distinct from H. Note that D2,19∪2K2∪4K1 6⊂
G. Since D2,19 ∪ 2P3 ∪ 2K1 6⊂ G, D2,19 ∪ P3 ∪K2 ∪ 3K1 6⊂ G and ω(G) = 8, G1 and G2

are complete by Fact 26, which leads to the impossible scenario D2,19 ∪ 2K2 ∪ 4K1 ⊂ G.
If D2,t is the unique non-trivial component of G, then G ⊂ D2,27∪6K1, as D2,28∪6K1 6⊂

G. Next, let G1 be the other (apart from H) non-trivial component. Since D2,12∪D2,2 6⊂ G
and D2,13 ∪G1 ∪ 4K1 6⊂ G for G1 ∈ {W3,1, K1 ∨ P3}, by Fact 25 we have

G1 ∈ {C5,W 3,3,Wc,c−1,Wc,c, Kc}, for a proper c > 2. (8)

For G1
∼= W 3,3, since D2,22 ∪ W 3,3 ∪ 3K1 6⊂ G, we obtain b 6 21. It follows that

G ⊂ D2,21 ∪W 3,3 ∪ 3K1. For G1
∼= C5, from D2,22 ∪C5 ∪ 4K1 6⊂ G, we deduce b 6 21, and

thus G ⊂ D2,21 ∪ C5 ∪ 4K1. For G1 ∈ {Wc,c,Wc,c−1} for some c > 2, we have b 6 21, as
follows from D2,22 ∪ P3 ∪ 4K1 6⊂ G and Fact 26. This implies G ⊂ D2,21 ∪W6,6.

The remaining case of (8) is G1
∼= Kc, for c > 2. Since D2,22 ∪ K2 ∪ 5K1 6⊂ G, we

have b 6 21. When 20 6 b 6 21, from D2,20 ∪ K3 ∪ 5K1 6⊂ G we have c = 2. Then
G ⊂ D2,21 ∪K2 ∪ 5K1 ⊂ D2,21 ∪W6,6. When b = 19, from D2,19 ∪K5 ∪ 5K1 6⊂ G we have
c 6 4. Then G ⊂ D2,19 ∪K4 ∪ 5K1.

Gathering the obtained possibilities for G, we arrive at the desired result.

We are in position to prove Theorem 7.

Proof of Theorem 7. The sufficiency for (i) follows from Corollary 6, whereas for (ii)–(iv)
it is confirmed by direct computation.

We proceed with the necessity, i.e., we assume that G is as in the statement of the
theorem. As noted before Fact 25, we have G ∼= G0 ∨ (Kh|Wh,h) with V (G0) = V (G) \
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NKq [V1]. If G0 does not contain Da,b as a component, then each component of G0 is an

induced subgraph of either Wc,c, or W 3,3, or K1 ∨C5, as follows from Fact 25. Therefore,
there exists a sufficiently large s > h, such that G ⊂ Hs ∨ (Ks|Ws,s) where Hs = s((K1 ∨
C5) ∪W 3,3 ∪Ws,s). In other words, G is an induced subgraph of some graph of D, as
in (i).

We next suppose that Da,b is a component of G0. For b > 19 and a = 2, or b > a > 4,
or b > 6 and a = 3, Facts 27 and 28 lead to (ii)–(iv). If either a = 2 and 4 6 b 6 18,
or a = 3 6 b 6 5, then G ∼= G0 by Fact 25. This implies that G contains a special
component, which contradicts the assumption of this theorem. The remaining possibility
is a = 2 6 b 6 3. Once again, by Fact 25, each component of G0 is an induced subgraph
of either Wc,c, or D2,3, or W 3,3, or K1 ∨C5. As before, this leads to the conclusion that G
is as in (i). The proof is completed.

Corollary 29 (Necessity in Theorem 2). Let G be a σ-graph satisfying either

(i) ω(G) > 54 or

(ii) ω(G) > 8 and G has a pendant vertex.

Then G is an induced subgraph of some graph of D ∪ {D2,4 ∨K52}.

Proof. We first suppose that G satisfies (ii). If G0 contains Da,b as a component for
a + b > 6, then Fact 25 yields V1 = ∅, and thus V (G) = V2 ∪ V (Kq). Since every
vertex of V2 is adjacent to at least two vertices of Kq, G has no pendant vertex, which
contradicts the assumption of this corollary. It remains to consider the case in which Da,b,
for a+b > 6, does not appear as a component of G0. Then, by virtue of Fact 25, for every
component H of G0 we have either H ∼= Wt,j with 0 6 j 6 t and t > 1, or H ∼= Da,b with
2 6 a 6 b 6 3, or H ∈ {K1 ∨ P3, K1 ∨ P4, K1 ∨ C5, C5,W 3,3}. In the first case we have
H ⊂ Wt,t; in the second case, we have H ⊂ D2,3; in the third case, we have H ⊂ K1 ∨C5

or H ⊂ W 3,3. Summa summarum, G is an induced subgraph of some graph of D.
In the remainder of the proof we suppose that G satisfies item (i) of the corollary. If G

has no any special component, then one of items (i)–(iv) of Theorem 7 holds. Moreover,
if G is as in Theorem 7(ii)–(iv), then ω(G) < 54 (even more, it is at most 8) contrary to
the assumption of the corollary. The remaining possibility (that is Theorem 7(i)) states
that G is an induced subgraph of some graph of D.

Otherwise, G contains a special component Da,b. If b > a > 3, then 17K1 ∪D3,3 ⊂ G
(as ω(G) > 54 and ω(Da,b) = 2), but this is impossible since λ2(K17 ∨D3,3) > 0.619 > σ.
Hence, b > 4 and a = 2. Together with 53K1 ∪D2,4 6⊂ G, this implies ω(G) = 54. Next,
from ω(G) = 54 and 19K1∪D2,5 6⊂ G, we obtain b = 4. For (a, b) = (2, 4), Fact 25 implies
G ∼= G0. Thus, we only need to determine the structure of G0.

We claim that D2,4 is the unique non-trivial component of G ∼= G0. Otherwise,
suppose that H is another non-trivial component. If H is a complete graph, then we have
F1
∼= D2,4 ∪K2 ∪ 51K1 ⊂ G, since ω(G) = 54 and ω(D2,4 ∨H) = 3. If H is non-complete,

applying Fact 26 to H and G (in the role of G0), we arrive at F2
∼= D2,4 ∪P3 ∪ 50K1 ⊂ G,
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since ω(G) = 54 and ω(D2,4 ∪ P3) = 4. Both possibilities are eliminated because F1

and F2 are not σ-graphs as confirmed directly.
Since D2,4 is the unique non-trivial component of G, we have G ∼= D2,4 ∪ kK1. From

ω(G) = 54 and ω(D2,4) = 2, we obtain k = 52, and thus G ∼= D2,4 ∪ 52K1. The proof is
completed.

5 Concluding remarks

Here we mention some details observed during the research, give directions for future
works and make more comparisons with the existing results. To make the reading easier,
for some notions introduced in the previous sections we refer to the first occurrence in the
text.

We have determined the σ-graphs whose clique number is at least 54. Simultaneously,
we have established all σ-graphs whose clique number is at least 8, under the additional
assumption that they contain at least one pendant vertex. At the first glance, someone
would expect a long list of the resulting graphs, but it occurs that they fall into the
induced subgraphs of exactly two structured types (if we consider the class D as one of
them and the single graph D2,4 ∨K52 as the other one).

The next natural step would be to consider the remaining σ-graphs whose clique num-
ber is at least 8, where ‘remaining’ refers to those without pendant vertices. Theorem 7
can be seen as a first step in this direction, as it provides the desired σ-graphs G under
the caveat that G has no any special component, where a special component is defined
upon the same theorem. Next, if G has a special component, then by Fact 25, we have
G ∼= G0; again, G0 is defined upon the same fact. With slight modifications in the proofs
of Facts 27 and 28, one may extend the result of Theorem 7. For example, the case in
which G has the special component D2,18 can be easily resolved, since there ω(G) = 8
must hold (provided by 7K1 ∪ D2,14 6⊂ G). However, it seems that extending Facts 27
and 28, and consequently Theorem 2, to cover all the remaining special components would
be a rather difficult task.

Besides, σ-graphs G satisfying 8 6 ω(G) 6 53 can be considered from the follow-
ing perspective. By Theorem 7, we may suppose that G contains at least one special
component (say Da,b). In this case, by Fact 25, we have V1 = ∅ and G ∼= G0. Since
D2,4∪D3,3 6⊂ G, 2D2,4 6⊂ G and 2D3,3 6⊂ G, we deduce that G contains exactly one special
component. Now, from Fact 25, we obtain that G is isomorphic to

Da,b∪a1(K1∨P3)∪a2(K1∨P4)∪a3(K1∨C5)∪a4C5∪a5W3,3∪a6D2,2∪a7D2,3∪
a8⋃
i=1

Wti,ji∪
a9⋃
i=1

Ksi ,

where ai > 0 for 1 6 i 6 9, ti > ji > 1 for 0 6 i 6 a8, si > 1 for 0 6 i 6 a9 and Da,b is a
special component of G (with a convention that

⋃0
i=1 Fi is an empty graph).

On the basis of Fact 25, we determine connected graphs with given clique number
and λ2 6 1

2
.

Proposition 30. Let G be a connected graph with clique number at least 19. Then
λ2(G) < 1

2
if and only if each component of G is either Kr with r > 1, or W2,1, or W3,1.
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Proof. By using the Courant-Weyl Inequalities, we get λ2(G) + λmin(G) 6 λ2(Kn) = −1.
One can easily check that λmin(H) > −3

2
holds for H ∈ {Kr,W2,1,W3,1}. Therefore,

λ2(G) < 1
2

holds for every graph given in the statement of this proposition.
For the necessity, we always suppose that ω(G) = q > 19 and Kq is a fixed maximum

clique of G.
Since λ2(G) < 1

2
<
√
5−1
2

, Fact 25 remains valid for G. Since the set V1, of vertices in
V (G)\V (Kq) having exactly one neighbour in Kq, is empty (as follows directly by taking
into account q > 19 and λ2 <

1
2
), we may reformulate this fact as follows.

Fact 17′. For any component H of G, there is either H ∼= Wt,j with 0 6 j 6 t and
t > 1, or H ∼= Da,b with b > a > 2, or

H ∈ {K1 ∨ P3, K1 ∨ P4, K1 ∨ C5, C5,W 3,3}.

We discuss the possibilities for H. If H ∼= Kr for some r > 1, we are done. Next, we
assume that H is not a complete graph. By Fact 17′, either H ∼= Wt,j with 1 6 j 6 t
and t > 2 (note that Wt,0

∼= Kt and W1,1
∼= K2), or H ∼= Da,b with b > a > 2, or

H ∈ {K1 ∨ P3, K1 ∨ P4, K1 ∨ C5, C5,W 3,3}.
Since λ2(P4) =

√
5−1
2

> 1
2
, we obtain P4 6⊂ G. So, the case H ∈ {K1 ∨ P4, K1 ∨

C5, C5,W 3,3} cannot occur. Observing that ω(Da,b) = ω(K1 ∨ P3) = 2 and taking into
account the restriction q > 19, we obtain H ∼= Wt,j with 1 6 j 6 t and t > 2, as

λ2(D2,2 ∪ 5K1) >
1
2

and λ2((K1 ∨ P3) ∪ 2K1) >
1
2
.

Since P4 6⊂ G, we have j = 1 and t > 2. We also have ω(Wt,1) = 2, along with
λ2(W4,1 ∪ 17K1) >

1
2
. Hence, t 6 3, which implies H ∼= W3,1 for t = 3 and H ∼= W2,1 for

t = 2.
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